Uniqueness of Double Limits of Double Sequences of Real Numbers

Uniqueness of Double Limits of Double Sequences of Real Numbers

Recall from the Double Limits and Iterated Limits of Double Sequences of Real Numbers page that a double sequence $(a_{mn})_{m,n=1}^{\infty}$ is said to converge to a limit $A \in \mathbb{R}$ if for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $m, n \geq N$ then:

(1)
\begin{align} \quad \mid a_{mn} - A \mid < \epsilon \end{align}

If such a number $A \in \mathbb{R}$ exists we say that $A$ is the limit of the double sequence $(a_{mn})_{m,n=1}^{\infty}$.

Like with limits of regular sequences of real numbers, if a double sequences of real numbers converges, then the limit is unique as we prove below.

Theorem 1: If $(a_{mn})_{m,n=1}^{\infty}$ is a double sequence that converges to both $A$ and $B$, $A, B \in \mathbb{R}$, then $A = B$.
  • Proof: Suppose that $(a_{mn})_{m,n=1}^{\infty}$ converges to both $A$ and $B$. Let $\epsilon > 0$ be given. Then for $\epsilon_1 = \frac{\epsilon}{2} > 0$ there exists an $N_1 \in \mathbb{N}$ such that if $m, n \geq N_1$ then:
(2)
\begin{align} \quad \mid a_{mn} - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}
  • Similarly, for $\epsilon_2 = \frac{\epsilon}{2} > 0$ there exists an $N_2 \in \mathbb{N}$ such that if $m, n \geq N_2$ then:
(3)
\begin{align} \quad \mid a_{mn} - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}
  • Let $N = \max \{N_1, N_2 \}$. Then for all $m, n \geq N$ we have that both $(*)$ and $(**)$ hold so:
(4)
\begin{align} \quad \: \mid A - B \mid = \mid A - a_{mn} + a_{mn} - B \mid \leq \mid A - a_{mn} \mid + \mid a_{mn} - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}
  • So $\mid A - B \mid < \epsilon$ for all $\epsilon > 0$ which implies that $\mid A - B \mid = 0$, i.e., $A - B = 0$. Thus $A = B$ and the limit of a convergent double sequence of real numbers is unique. $\blacksquare$
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License