Table of Contents
|
The Radius of Convergence of a Power Series Examples 1
Recall from The Radius of Convergence of a Power Series page that we can calculate the radius of convergence of a power series using the ratio test, that is if $\lim_{n \to \infty} \biggr \rvert \frac{a_{n+1}}{a_n} \biggr \rvert = L$, then the radius of convergence is $R = \frac{1}{L}$. If $L = 0$ then the radius of convergence $R = \infty$ and if $L = \infty$ then the radius of convergence $R = 0$.
We will now look at some more examples of determining the radius of convergence of a given power series.
Example 1
Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.
We first notice that $a_n = \frac{1}{n!}$ in our power series, and applying the rule above we have that
(1)Therefore the radius of convergence of this power series is $R = \infty$.
Example 2
Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(3x + 4)^n}{(n^3 + 2)3^n}$.
Let's first rewrite this power series as $\sum_{n=0}^{\infty} \frac{(3x + 4)^n}{(n^3 + 2)3^n} = \sum_{n=0}^{\infty} \frac{1}{n^3 + 2} \left ( \frac{3x + 4}{3} \right )^n = \sum_{n=0}^{\infty} \frac{1}{n^3 + 2} \left ( x + \frac{4}{3} \right )^n$.
Now we note that $a_n = \frac{1}{n^3 + 2}$, and using the ratio test:
(2)So the radius of convergence is $R = \frac{1}{L} = 1$.
Example 3
Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n!(5x + 3)^n}{(n+1)^2 + 4n}$.
Let's first rewrite this series as $\sum_{n=0}^{\infty} \frac{n!(5x + 3)^n}{(n+1)^2 + 4n} = \sum_{n=0}^{\infty} \frac{n!}{(n+1)^2 + 4n} (5x + 3)^n = \sum_{n=0}^{\infty}\frac{n!}{(n+1)^2 + 4n} \left (5 \left (x + \frac{3}{5} \right ) \right)^n = \sum_{n=0}^{\infty}\frac{5^nn!}{(n+1)^2 + 4n} \left (x + \frac{3}{5} \right)^n$.
Now we can see that $a_n = \frac{5^nn!}{(n+1)^2 + 4n}$. Using the ratio test to find the radius of convergence we have:
(3)Therefore the radius of convergence $R = 0$.