The Limit Comparison Test for Positive Series of Real Numbers
The Limit Comparison Test for Positive Series of Real Numbers
Recall from The Comparison Test for Positive Series of Real Numbers page that if $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are both positive sequences of real numbers such that there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ we have that $a_n \leq b_n$, then if $\displaystyle{\sum_{k=1}^{\infty} b_n}$ converges, we also have that $\displaystyle{\sum_{k=1}^{\infty} a_n}$ converges, and similarly, if $\displaystyle{\sum_{k=1}^{\infty} a_n}$ diverges then $\displaystyle{\sum_{k=1}^{\infty} b_n}$ diverges.
We will now look at another important comparison test that is sometimes easier to apply in certain situations.
Theorem 1: Let $\displaystyle{\sum_{n=1}^{\infty} a_n}$ and $\displaystyle{\sum_{n=1}^{\infty} b_n}$ be positive series of real numbers. Let $\displaystyle{\lim_{n \to \infty} \frac{a_n}{b_n} = L}$. a) If $0 < L < \infty$ then the series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ and $\displaystyle{\sum_{n=1}^{\infty} b_n}$ either both converge or both diverge. b) If $L = 0$ and $\displaystyle{\sum_{n=1}^{\infty} b_n}$ converges then $\displaystyle{\sum_{n=1}^{\infty} a_n}$ converges. c) If $L = \infty$ and $\displaystyle{\sum_{n=1}^{\infty} b_n}$ diverges then $\displaystyle{\sum_{n=1}^{\infty} a_n}$ diverges. |
- Proof of a): Suppose that $\displaystyle{\lim_{n \to \infty} \frac{a_n}{b_n} = L}$ where $0 < L < \infty$. Then there exists positive real numbers $m, M \in \mathbb{R}$ such that $m < L < M$.
- Now since $\displaystyle{\lim_{n \to \infty} \frac{a_n}{b_n} = L}$ we also have that there exists an $N \in \mathbb{N}$ such that if $n \geq N$ we have that:
\begin{align} \quad m < \frac{a_n}{b_n} < M \end{align}
- Or equivalently, for $n \geq N$ we see that:
\begin{align} \quad mb_n < a_n < Mb_n \end{align}
- Suppose that $\displaystyle{\sum_{k=1}^{\infty} a_n}$ converges. Then by the comparison test we see that the series $\displaystyle{\sum_{k=1}^{\infty} mb_n}$ also converges, so $\displaystyle{\sum_{k=1}^{\infty} b_n}$ converges.
- If instead $\displaystyle{\sum_{k=1}^{\infty} a_n}$ diverges then once again by the comparison test we see that the series $\displaystyle{\sum_{k=1}^{\infty} Mb_n}$ also diverges, so $\displaystyle{\sum_{k=1}^{\infty} b_n}$ diverges.
- Proof of b) Suppose that $\displaystyle{\lim_{n \to \infty} \frac{a_n}{b_n} = 0}$. Then there exists a positive number $M \in \mathbb{R}$ such that for all $n \geq N$ we have that:
\begin{align} \quad 0 < \frac{a_n}{b_n} < M \end{align}
- So $0 < a_n < Mb_n$. If $\displaystyle{\sum_{k=1}^{\infty} b_n}$ converges then $\displaystyle{\sum_{k=1}^{\infty} Mb_n}$ converges, and by the comparison test we have that $\displaystyle{\sum_{k=1}^{\infty} a_n}$ also converges.
- Proof of c) Suppose that $\displaystyle{\lim_{n \to \infty} \frac{a_n}{b_n} = \infty}$. Then there exists a positive number $m \in \mathbb{N}$ such that for all $n \geq N$ we have that:
\begin{align} \quad m < \frac{a_n}{b_n} < \infty \end{align}
- So $mb_n < a_n < \infty$. If $\displaystyle{\sum_{k=1}^{\infty} b_n}$ diverges then $\displaystyle{\sum_{k=1}^{\infty} mb_n}$ diverges, and by the comparison test we have that $\displaystyle{\sum_{k=1}^{\infty} a_n}$ also diverges. $\blacksquare$