The Limit Comparison Test for Positive Series Examples 1
Recall from The Limit Comparison Test for Positive Series page that if $\{ a_n \}$ and $\{ b_n \}$ are positive sequences where $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ then:
- If $0 < L < \infty$ then either both of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.
- If $L = 0$ and $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges. If $L = 0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then the test is inconclusive.
- If $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges then $\sum_{n=1}^{\infty} a_n$ diverges. If $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ converges, then the test is inconclusive.
Let's now look at some examples of applying the limit comparison test.
Example 1
Determine whether the series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n - 1}{n^3 - 2n^2 + 4}$ converges or diverges.
Notice that for $n$ sufficiently large, the series above behaves like $\sum_{n=1}^{\infty} \frac{2n^2}{n^3} = \sum_{n=1}^{\infty} \frac{2}{n}$. We note that $\sum_{n=1}^{\infty} \frac{2}{n}$ diverges as a harmonic series. Now:
(1)Therefore by the limit comparison test, we have that $\sum_{n=1}^{\infty} \frac{2n^2 + 3n - 1}{n^3 - 2n^2 + 4}$ also diverges.
Example 2
Determine whether the series $\sum_{n=1}^{\infty} \frac{4^n + 5}{7^n - 42}$ converges or diverges.
Notice that for $n$ sufficiently large, the series above behaves like $\sum_{n=1}^{\infty} \frac{4^n}{7^n} = \sum_{n=1}^{\infty} \left ( \frac{4}{7} \right )^n$ which converges as a geometric series. Now:
(2)Therefore $\sum_{n=1}^{\infty} \frac{4^n + 5}{7^n - 42}$ also converges.