The Group of Differentiable Real-Valued Functions
Recall from the Groups page that a group is a set $G$ paired with a binary operation $\cdot : G \times G \to G$ where:
- 1) For all $a, b, c \in G$ we have that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (Associativity of $\cdot$).
- 2) There exists an element $e \in G$ such that $a \cdot e = a$ and $e \cdot a = a$ (The existence of an identity for $\cdot$).
- 3) For all $a \in G$ there exists a $a^{-1} \in G$ such that $a \cdot a^{-1} = e$ and $a^{-1} \cdot a = e$ (The existence of inverses for each element in $G$).
We will now look at the group of differentiable real-valued functions on a fixed interval $[a, b]$.
Let $C^1 [a, b]$ denote the set of differentiable real-valued functions on the interval $[a, b]$ and let $+$ be the operation of function addition defined for $f, g \in C^1 [a, b]$ by:
(1)Let $f, g, h \in C^1 [a, b]$. We know by Calculus that the sum of two differentiable functions is a differentiable function, so $(f + g) \in C^1 [a, b]$ and hence $C^1 [a, b]$ is closed under $+$.
Furthermore, since $f$, $g$, and $h$ are real-valued functions, then $f(x), g(x), h(x) \in \mathbb{R}$ for all $x \in [a, b]$, and from the associativity of real numbers, we have that:
(2)Therefore $+$ is associative.
The identity element is the differentiable function $z(x) = 0$ (which of course is differentiable for any interval $[a, b]$).
For each $f \in C^1 [a, b]$ we know from calculus that for any $k \in \mathbb{R}$ that $kf$ is differentiable on $[a, b]$, that is, $kf \in C^1 [a, b]$. For $k = -1$ we have that $-f \in C^1 [a, b]$ and this function is the inverse of $f$ with respect to $+$ since:
(3)Hence $(C^1 [a, b], +)$ is a group. In fact, if we define $C^n [a, b]$ to be the set of $n$-times differentiable real-valued functions on the interval $[a, b]$ then it can be shown that $(C^n[a, b], +)$ is also a group.
Furthermore, we note that the set of continuous real-valued functions on the interval $[a, b]$ denoted $C[a, b]$ and the sets of $n$-differentiable real-valued functions on $[a, b]$, $C^n [a, b]$, are such that:
(5)Hence we can say that $(C^n [a, b], +)$ is a subgroup of $(C[a, b], +), (C^1[a, b], +), ..., (C^{n-1} [a, b], +)$.