The Fourier Integral Theorem
The Fourier Integral Theorem
So far we have looked at expressing functions - particularly $2\pi$-periodic functions, in terms of their Fourier series. Of course, not all functions are $2\pi$-periodic and it may be impossible to represent a function defined on, say, all of $\mathbb{R}$ by a Fourier series. The next best alternativ would be representing such functions as an integral. Fortunately, under suitable conditions, a function $f \in L(\mathbb{R})$ can be represented as an integral as the following theorem known as the Fourier Integral Theorem states.
Theorem 1 (The Fourier Integral Theorem): If $f \in L(\mathbb{R})$ and if there exists an $x \in \mathbb{R}$ and a $\delta > 0$ such that either: 1) $f$ is of bounded variation on $[x - \delta, x + \delta]$. 2) $f(x+)$ and $f(x-)$ both exist, and $\displaystyle{\int_{0}^{\delta} \frac{f(x + t) - f(x+)}{t} \: dt}$ and $\displaystyle{\int_0^{\delta} \frac{f(x + t) - f(x-)}{t} \: dt}$. Then $\displaystyle{\frac{f(x+) + f(x-)}{2} = \frac{1}{\pi} \int_0^{\infty} \left [ \int_{-\infty}^{\infty} f(u) \cos v (u - x) \: du \right ] \: dv}$ where $\displaystyle{\int_0^{\infty} ... \: dv}$ is an improper Riemann integral. |
Before we look at any examples regarding the Fourier integral theorem we will first establish the following two equalities for even and off functions satisfying the Fourier integral theorem:
Theorem 2: If $f \in L(\mathbb{R})$ satisfies either of the conditions of the Fourier integral theorem then: a) If $f$ is an even function then $\displaystyle{\frac{f(x+) + f(x-)}{2} = \frac{2}{\pi} \int_0^{\infty} \cos vx \left [ \int_0^{\infty} f(u) \cos vu \: du \right ] \: dv}$. b) If $f$ is an odd function then $\displaystyle{\frac{f(x+) + f(x-)}{2} = \frac{2}{\pi} \int_0^{\infty} \sin vx \left [ \int_0^{\infty} f(u) \sin vu \: du \right ] \: dv}$. |
- Proof of a) Suppose that $f \in L(\mathbb{R})$ satisfies either of the conditions of the Fourier integral theorem. Then:
\begin{align} \quad \frac{f(x+) + f(x-)}{2} &= \frac{1}{\pi} \int_0^{\infty} \left [ \int_{-\infty}^{\infty} f(u) \cos v(u - x) \: du \right ] \: dv \\ &= \frac{1}{\pi} \int_0^{\infty} \left [ \int_{-\infty}^{\infty} f(u)[\cos vu \cos vx + \sin vu \sin vx \right ] \: dv \\ &= \frac{1}{\pi} \int_0^{\infty} \left [ \int_{-\infty}^{\infty} f(u) \cos vu \cos vx \: du + \int_{-\infty}^{\infty} f(u) \sin vu \sin vx \: du \right] \: dv \end{align}
- Since $f$ is an even function of $u$ and $\sin vu$ is an odd function of $u$ we have that $f(u) \sin vu$ is an odd function of $u$ and so on the symmetric interval $(-\infty, \infty)$, $\displaystyle{\int_{-\infty}^{\infty} f(u) \sin vu \sin vx \: du = 0}$ so:
\begin{align} \quad \frac{f(x+) + f(x-)}{2} &= \frac{1}{\pi} \int_0^{\infty} \left [ \int_{-\infty}^{\infty} f(u) \cos vu \cos vx \: du \right ] \: dv \\ &= \frac{1}{\pi} \int_0^{\infty} \cos vx \left[ \int_{-\infty}^{\infty} f(u) \cos vu \: du \right ] \: dv \end{align}
- Since $f$ is an even function of $u$ and $\cos vu$ is an even function of $u$ we have that $f(u) \cos vu$ is an even function of $u$ and so on the symmetric interval $(-\infty, \infty)$, $\displaystyle{\int_{-\infty}^{\infty} f(u) \cos vu \: du = 2 \int_0^{\infty} f(u) \cos vu \: du}$, so:
\begin{align} \quad \frac{f(x+) + f(x-)}{2} &= \frac{2}{\pi} \int_0^{\infty} \cos vx \left [ \int_0^{\infty} f(u) \cos vu \: du \right ] \: dv \quad \blacksquare \end{align}
- Proof of b) Suppose that $f \in L(\mathbb{R})$ satisfies either of the conditions of the Fourier integral theorem. Then once again we have that:
\begin{align} \quad \frac{f(x+) + f(x-)}{2} &= \frac{1}{\pi} \int_0^{\infty} \left [ \int_{-\infty}^{\infty} f(u) \cos vu \cos vx \: du + \int_{-\infty}^{\infty} f(u) \sin vu \sin vx \: du \right] \: dv \end{align}
- Since $f$ is an odd function of $u$ and $\cos vu$ is an even function of $u$ we have that $f(u) \cos vu$ is an odd function of $u$ and similarly, since $\sin vu$ is an odd function of $u$ we have that $f(u) \sin vu$ is an even function of $u$. So, like in the proof of (a) above:
\begin{align} \quad \frac{f(x+) + f(x-)}{2} &= \frac{2}{\pi} \int_0^{\infty} \sin vx \left [ \int_0^{\infty} f(u) \sin vu \: du \right ] \: dv \quad \blacksquare \end{align}