Table of Contents
|
The Dimension of The Null Space and Range Examples 2
Recall from The Dimension of The Null Space and Range page that if $T$ is a linear map from $V \to W$ and $V$ is finite-dimensional then we have the following formula relating the dimension of $V$ to the dimension of the the null space of $T$ and the dimension of the range of $T$:
(1)We will now look at some examples applying this formula.
Example 1
Let $V$ be a finite-dimensional vector space and define a linear map $T \in (V, V)$ where $\mathrm{dim} \mathrm{null} (T) = 1$ and $\mathrm{dim} \mathrm{range} (T) = 4$.
By the dimension formula above, we must have that:
(2)Let $\{ v_1, v_2, v_3, v_4, v_5 \}$ be a basis of $V$. Then for every vector $v \in V$ we have that $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 + a_5v_5$. Define the linear map $T$ by:
(3)Such a linear map exists as seen on the Linear Maps Defined by Bases page. We have that:
(4)Notice that $T(v) = 0$ if and only if $a_1 = a_2 = a_3 = a_4 = 0$, and so:
(5)Note that $\mathrm{null} (T) = \mathrm{span} (v_5)$ and $\mathrm{dim} (\mathrm{span} (v_5)) = 1$, so $\mathrm{null} (T) = 1$.
Now we will show that $\mathrm{dim} ( \mathrm{range} (T)) = 4$. Let $w \in \mathrm{range} (T)$. Then there exists a vector $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 + a_5v_5 \in V$ such that:
(6)Thus we have that:
(7)Notice that $\mathrm{range} (T) = \mathrm{span} (v_1, v_2, v_3, v_4)$ and that $\mathrm{dim} (\mathrm{span} (v_1, v_2, v_3, v_4)) = 4$ so $\mathrm{dim} (\mathrm{range} (T)) = 4$
Example 2
Let $n \in \mathbb{N}$. Find a linear map $T : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ where $\mathrm{dim} (\mathrm{null} (T)) = \mathrm{dim} (\mathrm{range} (T))$.
Note that $\mathrm{dim} (\mathbb{R}^{2n}) = 2n$. Let $\{ v_1, v_2, ..., v_n, v_{n+1}, v_{n+2}..., v_{2n} \}$ be a basis of $V$ and define $T$ by:
(8)Now since $\{ v_1, v_2, ..., v_n, v_{n+1}, v_{n+2} ..., v_{2n} \}$ is a basis of $V$, then for every vector $v \in V$ there exists scalars in $\mathbb{F}$ such that:
(9)Apply the linear map $T$ to both sides of the equation above to get that:
(10)We then have that:
(11)As we can see, $\mathrm{null} (T) = \mathrm{span} (v_{n+1}, v_{n+2}, ..., v_{2n})$ and $\mathrm{dim} (\mathrm{span} (v_{n+1}, v_{n+2}, ..., v_{2n})) = n$.
Furthermore we have that:
(12)As we can see, $\mathrm{range} (T) = \mathrm{span} (v_1, v_2, ..., v_n)$ and $\mathrm{dim} (\mathrm{span} (v_1, v_2, ..., v_n)) = n$.
Therefore $T$ is a linear map such that $\mathrm{dim} (\mathrm{null} (T)) = n = \mathrm{dim} (\mathrm{range} (T))$.
Example 3
Let $n \in \mathbb{N}$. Show that there exists no linear map $T \in \mathcal ( \mathbb{R}^{2n-1}, \mathbb{R}^{2n-1})$ such that $\mathrm{dim} (\mathrm{null} (T)) = \mathrm{dim} (\mathrm{range} (T))$.
We see that $\mathrm{dim} (\mathbb{R}^{2n-1} ) = 2n - 1$ which is an odd number. Now suppose that $\mathrm{dim} (\mathrm{null} (T)) = \mathrm{dim} (\mathrm{range} (T))$. Then by the dimension formula from the top of this page, we have that:
(13)The equation above implies that $\mathrm{dim} (\mathrm{null} (T)) = \frac{2n - 1}{2}$, however, $\frac{2n - 1}{2}$ is not a whole number, and so there exists no linear map $T \in \mathcal ( \mathbb{R}^{2n-1}, \mathbb{R}^{2n-1})$ such that $\mathrm{dim} (\mathrm{null} (T)) = \mathrm{dim} (\mathrm{range} (T))$.