The Dimension of a Sum of Subspaces Examples 2
Recall from The Dimension of a Sum of Subspaces page that if $V$ is a finite-dimensional vector space and if $U_1$ and $U_2$ are subspaces of $V$ then:
(1)We will now look at some more example problems regarding this important formula for finite-dimensional vector spaces.
Example 1
Let $V$ be a finite-dimensional vector space and let $U_1$, $U_2$, …, $U_m$ be finite-dimensional subspaces of $V$. Show that $\mathrm{dim} (U_1 + U_2 + ... + U_m) ≤ \mathrm{dim} (U_1) + \mathrm{dim} (U_2) + ... + \mathrm{dim} (U_m)$.
Consider the sum $U_1 + (U_2 + ... + U_m)$. In applying the formula above we see that:
(2)If we apply the dimension formula to the term $\mathrm{dim} (U_2 + [U_3 + ... + U_m])$ we have that:
(3)Let $S = \mathrm{dim} (U_1 \cap [U_2 + ... + U_m]) + \mathrm{dim} (U_2 \cap [U_3 + ... + U_m]) + ... + \mathrm{dim} (U_{m-1} \cap [U_m]) > 0$. Inductively we have that:
(4)Example 2
Let $V$ be a finite-dimensional vector space such that $\mathrm{dim} (V) = 5$ and let $U$ be a subspace of $V$ such that $\mathrm{dim} (U) = 2$. If $V = U \oplus W$, then what values can $\mathrm{dim} (W)$ be?
Using the formula from above and we have that:
(5)Notice that since $V = U \oplus W$ then $U \cap W = \{ 0 \}$ so $\mathrm{dim} (U \cap W) = 0$, and so the equation above implies that $\mathrm{dim} W = 3$.
Example 3
Consider the vector space $\mathbb{R}^5$, and let $U = \{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = x_2, x_3 = x_4 = x_5 \}$ and $W = \{ (x_1, x_2, x_3, x_4, x_4) \in \mathbb{R}^5 : x_1 + x_2 = x_3 + x_4 + x_5 \}$ both be subspaces of $\mathbb{R}^5$. Determine $\mathrm{dim} (U \cap W)$.
Rearranging the dimension formula, we have that:
(6)We can first rewrite the subspace $U$ as:
(7)Therefore $U = \mathrm{span} ((1, 1, 0, 0, 0), (0, 0, 1, 1, 1))$ and so $\mathrm{dim} (U) = 2$.
We can also rewrite the subspace $W$ as:
(8)Therefore $W = \mathrm{span} (1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 0, -1), (0, 0, 0, 1, -1) \in \mathbb{R}^5 : x_1, x_2, x_3, x_4 \in \mathbb{R} \}$ and so $\mathrm{dim} (W) = 4$.
We also see that $\mathrm{R}^5 = U + W$ so $\mathrm{dim} (U + W) = 5$, and so then:
(9)