Summary of Group, Ring, and Field Axioms
Summary of Group, Ring, and Field Axioms
We now summarize the axioms for groups, rings, and fields for comparison.
Structure | Closed under $+$ | $+$ Asso. | Identity $0$ | Inv. Elements for $+$ | $+$ Comm. | Closed under $*$ | $*$ Asso. | Identity $1$ | Inv. Elements for $*$ (except $0$) | $*$ Comm. | Distrib. |
---|---|---|---|---|---|---|---|---|---|---|---|
Group | ✔ | ✔ | ✔ | ✔ | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Abelian Group (Commutative Group) | ✔ | ✔ | ✔ | ✔ | ✔ | N/A | N/A | N/A | N/A | N/A | N/A |
Ring | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | N/A | N/A | ✔ |
Commutative Ring | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | N/A | ✔ | ✔ |
Division Rings | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | N/A | ✔ |
Fields (Commutative Division Rings) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |