Spanning Set of a Vector Space Examples 1
Recall from the Spanning Set of a Vector Space page that if for every vector $v \in V$ we have that $v$ can be written as a linear combination of the set of vectors in the set $\{ v_1, v_2, ..., v_n \}$ then we say that the set of vectors $\{ v_1, v_2, ..., v_n \}$ spans $V$ and write $V = \mathrm{span} (v_1, v_2, ..., v_n)$.
We will now look at some examples of spanning sets of vectors.
Example 1
Prove that if $\{ v_1, v_2, ..., v_n \}$ is a set of vectors from the vector space $V$ then $\mathrm{span} (v_1, v_2, ..., v_n)$ is a subspace of $V$.
Let $\{ v_1, v_2, ..., v_n \}$ be a set of vectors in $V$. To show that $\mathrm{span} (v_1, v_2, ..., v_n)$ is a subspace of $V$ we must show that $0 \in \mathrm{span} (v_1, v_2, ..., v_n)$, and that $\mathrm{span} (v_1, v_2, ..., v_n)$ is closed under addition and scalar multiplication.
Clearly $0 \in \mathrm{span} (v_1, v_2, ..., v_n)$ since we can write:
(1)Now let $u, v \in \mathrm{span} (v_1, v_2, ..., v_n)$. Then for some set of scalars $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n \in \mathbb{F}$ we have that $u = a_1v_1 + a_2u_2 + ... + a_nu_n$ and $w = b_1v_1 + b_2v_2 + ... + b_nv_n$ and so for $c,d \in \mathbb{F}$ we have that:
(2)Therefore $(cu + dv) \in \mathrm{span} (v_1, v_2, ..., v_n)$ so $\mathrm{span} (v_1, v_2, ..., v_n)$ is closed under addition and scalar multiplication.
Example 2
Show that if the set of vectors $\{ v_1, v_2, v_3, v_4 \}$ spans $V$ then $\{ v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4 \}$ spans $V$.
Let $v \in \mathrm{span} (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4 )$. Then for constants $a_1, a_2, a_3, a_4 \in \mathbb{F}$ we have that:
(3)Therefore $v \in \mathrm{span} (v_1, v_2, v_3, v_4) = V$, so $\mathrm{span} (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4) \subseteq V$.
Now let $v \in V = \mathrm{span} (v_1, v_2, v_3, v_4)$. We want to show that for some set of scalars $a_1, a_2, a_3, a_4 \in \mathbb{F}$ that we have that:
(4)Since $v \in \mathrm{span} (v_1, v_2, v_3, v_4)$ then for $b_1, b_2, b_3, b_4 \in \mathbb{F}$ we have that:
(5)Thus if we let $b_1 = a_1$, $b_2 = a_2 - a_1$, $b_3 = a_3 - a_2$ and $b_4 = a_4 - a_3$ then:
(6)So therefore $a_1 = b_1$, $a_2 = b_2 + a_1$, $a_3 = b_3 + a_2$, and $a_4 = b_4 + a_3$, so $v \in \mathrm{span} (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$, so $V \subseteq \mathrm{span} (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$.