Second Countable Topological Spaces
Recall from the First Countable Topological Spaces page that a topological space $(X, \tau)$ is said to be first countable if every $x \in X$ has a countable local basis (also recall that a local basis for a point $x \in X$ is a collection $\mathcal B_x$ of open sets such that for every open neighbourhood of $x$, $U \in \tau$ with $x \in U$ we have that there exists a $B \in \mathcal B_x$ such that $x \in B \subseteq U$).
We will now look at another type of topological space called second countable topological spaces.
Definition: The topological space $(X, \tau)$ is said to be Second Countable if there exists a basis $\mathcal B$ of $\tau$ that is countable. |
Example 1
If $X$ is any nonempty finite set with $n$ elements then the topological space $(X, \tau)$ is always second countable since any basis $\mathcal B$ of $\tau$ is a subset of $\tau$ and the size of $\mathcal B$ is bounded above:
(1)For another example, let $(X, \tau)$ be a topological space such that $X$ is infinite and $\tau$ is a nested topological space. Then we have that each of the subsets $U_i \in \tau$ are nested in the manner:
(2)We can clearly define a bijection $f : \mathbb{N} \to \tau$ defined for each $n \in \mathbb{N}$ by $f(n) = U_n$. So if $\tau$ induces the nesting above then $\tau$ is countable and so any subset $\mathcal B \subseteq \tau$ is also countable.