Scalar Multiples of Matrices
Definition: A scalar is a quantity that has a magnitude (size or length) but no direction. |
Unless otherwise specified, scalars in the context of Linear Algebra will be a real number $k \in \mathbb{R}$. We are now ready to define scalar multiplication on a matrix.
Definition: If $A$ is an $m \times n$ matrix and $k \in \mathbb{R}$ a scalar, then the scalar multiple of $A$ by $k$ denoted $kA$ is an $m \times n$ matrix, all of whose entries are multiplied by $k$. |
Determining a scalar multiple of a matrix is easy. For example, consider the matrix $A = A = \begin{bmatrix}1 & 2 & 3 & 4\\ 5 & 6 & 7 & 8 \end{bmatrix}$. If we wanted to figure out what the matrix $2A$ is, we would just take every entry in $A$ and multiply it by $2$ to get $2A = \begin{bmatrix}2\cdot1 & 2\cdot2 & 2\cdot3 & 2\cdot4\\ 2\cdot5 & 2\cdot6 & 2\cdot7 & 2\cdot8\end{bmatrix} = \begin{bmatrix}2 & 4 & 6& 8\\ 10 & 12 & 14 & 16\end{bmatrix}$
In general, if we have an $m \times n$ matrix $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & & a_{2n}\\ \vdots & & \ddots & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ and a scalar $k \in \mathbb{R}$ then:
(1)We will now look at some properties of scalar multiples of matrices in the following theorem.
Theorem 1: Let $A$ and $B$ be $m \times n$ matrices, and let $k, l \in \mathbb{R}$ be scalars. Then: a) $k(A + B) = kA + kB$. b) $k(A - B) = kA - kB$. c) $(k + l)A = kA + lA$. d) $(k - l)A = kA - lA$. e) $k(lA) = (kl) A$. |
We will prove (a) and (c) and leave the rest of the proofs to the reader as they follow the same format.
- Proof of (a):
- Proof of (c):
Example 1
Given the matrix $A = \begin{bmatrix}2 & 4\\ 1 & 0\\ 0 & 3\\ -3 & 2\\ 1 & 3\end{bmatrix}$, find the matrix $-3A$.
To determine $-3A$, we will multiply every entry in A by -3 to obtain $-3A = \begin{bmatrix} -6 & -12\\ -3 & 0\\ 0 & -9\\ 9 & -6\\ -3 & -9 \end{bmatrix}$.