The Root Test for Positive Series Examples 1
Recall from The Root Test for Positive Series of Real Numbers page the following test for convergence/divergence of a geometric series:
The Root Test for Positive Series of Real Numbers
Let $(a_n)_{n=1}^{\infty}$ be a positive sequence of real numbers and let $\displaystyle{L = \lim_{n \to \infty} (a_n)^{1/n}}$.
a) If $0 \leq L < 1$ then we conclude that:
- The series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ converges.
b) If $1 < L \leq \infty$ then we conclude that:
- The series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ diverges.
c) If $L = 1$ then the ratio test is inconclusive.
We will now look at some examples of applying the root test.
Example 1
Determine whether $\displaystyle{\sum_{n=1}^{\infty} \left ( \frac{e^n}{n2^n} \right )^n}$ converges or diverges.
Applying the root test and we see that:
(1)So by the root test we conclude that since $1 < L = \infty \leq \infty$ that $\displaystyle{\sum_{n=1}^{\infty} \left ( \frac{e^n}{n2^n} \right )^n}$ diverges.
Example 2
Determine whether $\displaystyle{\sum_{n=1}^{\infty} \frac{\sqrt{4^n}}{3^n}}$ converges or diverges.
Applying the root test and we see that:
(2)So by the root test we conclude that since $0 \leq \frac{2}{3} < 1$ that $\displaystyle{\sum_{n=1}^{\infty} \frac{\sqrt{4^n}}{3^n}}$ converges.