Riemann-Stieltjes Integrals with Increasing Integrators Review

Riemann-Stieltjes Integrals with Increasing Integrators Review

We will now review some of the recent content regarding Riemann-Stieltjes integrals with increasing integrators.

Let $f$ and $g$ be functions defined on $[a, b]$ and let $\alpha$ be an increasing function on $[a, b]$.

  • On the Upper and Lower Riemann-Stieltjes Sums page we considered a special type of Riemann-Stieltjes sum. For every partition $P = \{ a = x_0, x_1, ..., x_n = b \} \in \mathscr{P}[a, b]$, for each $k \in \{1, 2, ..., n \}$ we defined the numbers $M_k(f)$ and $m_k(f)$ as:
(1)
\begin{align} \quad M_k (f) = \sup \{ f(x) : x \in [x_{k-1}, x-k] \} \quad \mathrm{and} \quad m_k(f) = \inf \{ f(x) : x \in [x_{k-1}, x_k] \} \end{align}
  • Then we said that the Upper Riemann-Stieltjes Sum corresponding to the partition $P$ is:
(2)
\begin{align} \quad U(P, f, \alpha) = \sum_{k=1}^{n} M_k(f) \Delta \alpha_k \end{align}
  • Similarly, we said that the Lower Riemann-Stieltjes Sum corresponding to the partition $P$ is:
(3)
\begin{align} \quad L(P, f, \alpha) = \sum_{k=1}^{n} m_k(f) \Delta \alpha_k \end{align}
  • We noted that for all partitions $P$, that since $\alpha$ is an increasing function that then $\Delta \alpha_k \geq 0$, and for all $t_k \in [x_{k-1}, x_k]$, since $m_k(f) \leq f(t_k) \leq M_k(f)$, we see that:
(4)
\begin{align} \quad L(P, f, \alpha) \leq S(P, f, \alpha) \leq U(P, f, \alpha) \end{align}
(5)
\begin{align} \quad U(P', f, \alpha) \leq U(P, f, \alpha) \quad \mathrm{and} \quad \mathrm{and} L(P, f, \alpha) \leq L(P', f, \alpha) \end{align}
  • We also noted that if $P_1, P_2 \in \mathscr{P}[a, b]$ are ANY partitions on $[a, b]$ then we always have that:
(6)
\begin{align} \quad L(P_1, f, \alpha) \leq U(P_2, f, \alpha) \end{align}
  • We concluded that the set of upper Riemann-Stieltjes sums is bounded below by any lower Riemann-Stieltjes sum, and similarly, the set of all lower Riemann-Stieltjes sums is bounded above by any upper Riemann-Stieltjes sum.
(7)
\begin{align} \quad \overline{\int_a^b} f(x) \: d \alpha(x) = \inf \{ U(P, f, \alpha) : P \in \mathscr{P}[a, b] \} \end{align}
  • Similarly, we defined the Lower Riemann-Stieltjes Integral of $f$ with respect to $\alpha$ on $[a, b]$ as:
(8)
\begin{align} \quad \underline{\int_a^b} f(x) \: d \alpha(x) = \sup \{ L(P, f, \alpha) : P \in \mathscr{P}[a, b] \} \end{align}
(9)
\begin{align} \quad \overline{\int_a^b} f(x) \: d \alpha (x) = \overline{\int_a^c} f(x) \: d \alpha (x) + \overline{\int_c^b} f(x) \: d \alpha (x) \end{align}
(10)
\begin{align} \quad \underline{\int_a^b} f(x) \: d \alpha (x) = \underline{\int_a^c} f(x) \: d \alpha (x) + \underline{\int_c^b} f(x) \: d \alpha (x) \end{align}
(11)
\begin{align} \quad \overline{\int_a^b} [f(x) + g(x)] \: d \alpha (x) \leq \overline{\int_a^b} f(x) \: d \alpha(x) + \overline{\int_a^b} f(x) \: d \alpha (x) \end{align}
(12)
\begin{align} \quad \underline{\int_a^b} [f(x) + g(x)] \: d \alpha (x) \geq \underline{\int_a^b} f(x) \: d \alpha (x) + \underline{\int_a^b} f(x) \: d \alpha (x) \end{align}
(13)
\begin{align} \quad U(P, f, \alpha) - L(P, f, \alpha) < \epsilon \end{align}
  • We then proved that if Riemann's condition holds, then $\overline{\int_a^b} f(x) \: d \alpha(x) = \underline{\int_a^b} f(x) \: d \alpha (x)$, i.e., the upper and lower Riemann-Stieltjes integrals of $f$ with respect to $\alpha$ on $[a, b]$ are equal to each other. We proved that the equality of the upper and lower Riemann-Stieltjes integrals then implies the existence of the regular Riemann-Stieltjes integral of $f$ with respect to $\alpha$ on $[a, b]$ which completes the equivalence of these three statements.
(14)
\begin{align} \quad \int_a^b f(x) \: d \alpha(x) \leq \int_a^b g(x) \: d \alpha (x) \end{align}
(15)
\begin{align} \quad \biggr \lvert \int_a^b f(x) \: d \alpha (x) \biggr \rvert \leq \int_a^b \mid f(x) \mid \: d \alpha (x) \end{align}
  • With the theorem directly above, on The Product of Riemann-Stieltjes Integrable Functions with Increasing Integrators page we were able to show that the product $fg$ is also Riemann-Stieltjes integrable by noting that $f(x)g(x) = \frac{1}{2}[f(x)]^2 + \frac{1}{2}[g(x)]^2 - \frac{1}{2}[f(x) + g(x)]^2$ and noting that Riemann-Stieltjes integrals of all terms on the righthand side of this equation exist by previous theorems we've looked at.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License