Table of Contents
|
The Ratio Test for Positive Series of Real Numbers Examples 1
Recall from The Ratio Test for Positive Series of Real Numbers page the following test for convergence/divergence of a geometric series:
The Ratio Test for Positive Series of Real Numbers
Let $(a_n)_{n=1}^{\infty}$ be a positive sequence of real numbers and let $\displaystyle{\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}}$.
a) If $0 \leq \rho < 1$ then we conclude that:
- The series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ converges.
b) If $1 < \rho \leq \infty$ then we conclude that:
- The series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ diverges.
c) If $\rho = 1$ then the ratio test is inconclusive.
We will now look at some examples of applying the ratio test.
Example 1
Determine whether $\displaystyle{\sum_{n=1}^{\infty} \frac{e^nn!}{3n2^n(n+1)!}}$ converges or diverges.
Using the ratio test and we see that:
(1)So $\displaystyle{\rho = \frac{e}{2} > 1}$. Hence $\displaystyle{\sum_{n=1}^{\infty} \frac{e^nn!}{3n2^n(n+1)!}}$ diverges by the ratio test.
Example 2
Determine whether $\displaystyle{\sum_{n=1}^{\infty} \frac{2^{n^2}cos \left ( \frac{1}{n} \right )}{e^n(n+1)!}}$ converges or diverges.
Using the ratio test and we see that:
(2)so $\displaystyle{\rho = \infty > 0}$. Hence $\displaystyle{\sum_{n=1}^{\infty} \frac{2^{n^2}cos \left ( \frac{1}{n} \right )}{e^n(n+1)!}}$ diverges by the ratio test.