Proving the Existence of Limits to Infinity
Recall from the Limits to Infinity page that we say that:
- $\lim_{x \to a} f(x) = \infty$ means that $\forall k > 0 \: \exists \delta > 0 \: \mathrm{s.t.} \: \forall x : 0 < \mid x - a \mid < \delta, \: f(x) > k$.
- $\lim_{x \to a} f(x) = -\infty$ means that $\forall k < 0 \: \exists \delta > 0 \: \mathrm{s.t.} \: \forall x : 0 < \mid x - a \mid < \delta, \: f(x) < k$.
Example 1
Prove that $\lim_{x \to 0} \frac{1}{x^2} = \infty$.
By the definition of a limit going to infinity, we get that $\forall k > 0 \: \exists \delta > 0 \: \mathrm{s.t.} \: \forall x : 0 < \mid x - a \mid < \delta, \: f(x) > k$.
Let $k > 0$ be given and find $\delta > 0$ such that if $0 < \mid x \mid< \delta$ then $\frac{1}{x^2} > k$. We will start off with the following inequality:
(1)So choose $\delta = \frac{1}{\sqrt{k}}$. If $0 < \mid x \mid < \delta = \frac{1}{\sqrt{k}}$ then:
(2)Therefore, $\lim_{x \to 0} \frac{1}{x^2} = \infty$.
Example 2
Prove that $\lim_{x \to 0} -\frac{1}{x^2} = -\infty$.
By the definition of a limit going to negative infinity, $\forall k < 0 \: \exists \delta > 0 \: \mathrm{s.t.} \: \forall x : 0 < \mid x - a \mid < \delta, \: f(x) < k$.
Let $k < 0$ be given and find $\delta > 0$ such that if $0 < \mid x \mid < \delta$ then $-\frac{1}{x^2} < k$. We will first start off with the following inequality:
(3)Note: Since $k < 0$, then $-k > 0$, so our square root is still defined. |
So choose $\delta = \frac{1}{\sqrt{-k}}$. If $0 < \mid x \mid < \delta = \frac{1}{\sqrt{-k}}$, then:
(4)Therefore $\lim_{x \to 0} -\frac{1}{x^2} = -\infty$.