Proving The Existence of Limits Examples 1
We will now look at some more examples of proving the existence of limits using the definition of a limit, that is $\lim_{x \to a} f(x) = L$ says that $\forall \epsilon > 0 \: \exists \delta > 0 \: \mathrm{s.t.} \: \forall x : 0 < \mid x - a \mid < \delta, \mid f(x) - L \mid < \epsilon$. More examples can be found on the following pages:
- Proving The Existence of Limits Examples 1
- Proving The Existence of Limits Examples 2
- Proving The Existence of Limits Examples 3
- Proving The Existence of Limits Examples 4
- Proving The Existence of Limits Examples 5
Example 1
Prove that $\lim_{x \to 1} (1 - 4x) = 13$.
First let $\epsilon > 0$ be given and find $\delta > 0$ such that if $0 < \mid x + 3 \mid < \delta$ then $\mid (1 - 4x) - 13 \mid < \epsilon$.
We will start with the following inequality:
(1)We will choose $\delta = \frac{\epsilon}{4}$.
So if $0 < \mid x + 3 \mid < \delta = \frac{\epsilon}{4}$, then:
(2)Therefore, $\lim_{x \to -3} (1 - 4x) = 13$.
Example 2
Prove that $\lim_{x \to 1} \frac{2 + 4x}{3} = 2$.
Let $\epsilon > 0$ be given and find $\delta > 0$ such that if $0 < \mid x - 1 \mid < \delta$, then $\biggr \rvert \frac{2 + 4x}{3} \biggr \rvert < \epsilon$.
Start with the following inequality:
(3)Therefore choose $\delta = \frac{3}{4} \epsilon$. If $0 < \mid x - 1 \mid < \delta = \frac{3}{4} \epsilon$, then:
(4)Therefore $\lim_{x \to 1} \frac{2 + 4x}{3} = 2$.