Properties of the Complex Natural Logarithm Function
Properties of the Complex Natural Logarithm Function
Recall from The Complex Natural Logarithm Function page that the natural logarithm function defined for the branch $A_{y_0} = \{ z = x + yi \in \mathbb{C} : x \in \mathbb{R}, y_0 \leq y < y_0 + 2\pi \}$, $\log : \mathbb{C} \setminus \{ 0 \} \to A_{y_0} \}$ is defined for all $z \in \mathbb{C}$ by:
(1)\begin{align} \quad \log (z) = \log \mid z \mid + i \arg (z) \end{align}
Where $y_0 \leq \arg (z) < y_0 + 2\pi$.
If we remove the restriction on $\arg (z)$ above, then $\log (z)$ is a well-defined multi-valued function on $\mathbb{C} \setminus \{ 0 \}$. We will now look at some properties of this general complex natural logarithm function.
Proposition 1: Let $z, w \in \mathbb{C} \setminus \{ 0 \}$. Then $\log (zw) = \log (z) + \log (w)$ up to an integer multiple of $2\pi i$. |
- Proof: From the theorem presented on the Polar Representation with Multiplication of Complex Numbers page we know that $\mid zw \mid = \mid z \mid \mid w \mid$ and $\arg(zw) = \arg(z) + \arg(w) \pmod {2\pi}$, and so:
\begin{align} \quad \log(zw) &= \log \mid zw \mid + i \arg (zw) \\ &= \log \mid z \mid \mid w \mid + i \arg(z + w) \\ &= \log \mid z \mid + \log \mid w \mid + i [\arg (z) + \arg(w) \pmod {2\pi}] \\ &= \log \mid z \mid + i \arg(z) + \log \mid w \mid + i \arg (w) + 2k\pi i \\ &= \log (z) + \log (w) + 2k \pi i \end{align}
- For some $k \in \mathbb{Z}$. Therefore $\log (zw) = \log (z) + \log (w)$ up to an integer multiple of $2\pi i$. $\blacksquare$