Partial Derivatives of Functions from Rn to Rm

Partial Derivatives of Functions from Rn to Rm

One of the core concepts of multivariable calculus involves the various differentiations of functions from $\mathbb{R}^n$ to $\mathbb{R}^m$. We begin by defining the concept of a partial derivative of such functions.

Definition: Let $S \subseteq \mathbb{R}^n$ be open, $\mathbf{c} \in S$, and $\mathbf{f} : S \to \mathbb{R}^m$. Denote $\mathbf{e}_k = (0, 0, ..., 0, \underbrace{1}_{k^{\mathrm{th}} \: coordinate}, 0, ..., 0) \in \mathbb{R}^n$ for each $k \in \{ 1, 2, ..., n \}$, i.e., $\mathbf{e}_k$ is the unit vector in the direction of the $k^{\mathrm{th}}$ coordinate axis. Then the Partial Derivative of $\mathbf{f}$ at $\mathbf{c}$ with Respect to the $k^{\mathrm{th}}$ Variable is defined as $\displaystyle{D_k \mathbf{f} (\mathbf{c}) = \lim_{h \to 0} \frac{\mathbf{f} (\mathbf{c} + h\mathbf{e}_k) - \mathbf{f}(\mathbf{c})}{h}}$ provided that this limit exists.

Suppose that $S \subseteq \mathbb{R}^n$ is open, $\mathbf{c} \in S$, and $f : S \to \mathbb{R}$. Then the partial derivative of $f$ at $\mathbf{c}$ with respect to the $k^{\mathrm{th}}$ variable is:

(1)
\begin{align} \quad D_k f(\mathbf{c}) &= \lim_{h \to 0} \frac{f(\mathbf{c} + h\mathbf{e}_k) - f(\mathbf{c})}{h} \\ &= \lim_{h \to 0} \frac{f(c_1, c_2, ..., c_k + h, ..., c_n) - f(c_1, c_2, ..., c_k, ... c_n)}{h} \end{align}

For example, consider the function $f : \mathbb{R}^3 \to \mathbb{R}$ defined by:

(2)
\begin{align} \quad f(x, y, z) = 3x^2yz \end{align}

Then the partial derivative of $f$ with respect to the variable $x$ at the point $(1, 2, -1)$ is:

(3)
\begin{align} \quad D_1 f(1, 2, -1) &= \lim_{h \to 0} \frac{f(1 + h, 2, -1) - f(1, 2, -1)}{h} \\ &= \lim_{h \to 0} \frac{3(1 + h)^2(2)(-1) - 3(1)^2(2)(-1)}{h} \\ &= \lim_{h \to 0} \frac{-6(1 + h)^2 + 6}{h} \\ &= \lim_{h \to 0} \frac{-6(1 + 2h + h^2) + 6}{h} \\ &= \lim_{h \to 0} \frac{-12h - 6h^2}{h} \\ &= \lim_{h \to 0} -12 - 6h \\ &= -12 \end{align}

We can also easily calculate the partial derivatives $D_2 f(1, 2, -1)$ and $D_3(1, 2, -1)$. So the definition of a partial derivative for $\mathbf{f} : S \to \mathbb{R}^m$ is somewhat justified since the case when $m = 1$ yields the definition of the partial derivative for a multivariable real-valued function.

Furthermore, suppose that $S \subseteq \mathbb{R}$ and that $\mathbf{f} : S \to \mathbb{R}^m$. Then $\mathbf{f} = (f_1, f_2, ..., f_m)$ where $f_i : S \to \mathbb{R}$ for each $i \in \{ 1, 2, ..., m \}$ are single-variable real-valued functions. The partial derivative of $\mathbf{f}$ with respect to the first variable (the only variable, or simply just the derivative) at $\mathbf{c}$ is:

(4)
\begin{align} \quad D_1 \mathbf{f} (c) &= \lim_{h \to 0} \frac{\mathbf{f}(c + h) - \mathbf{f}(c)}{h} \\ &= \lim_{h \to 0} \frac{(f_1(c + h), f_2(c + h), ..., f_m(c + h)) - (f_1(c), f_2(c), ..., f_m(c))}{h} \\ &= \lim_{h \to 0} \frac{(f_1(c + h) - f_1(c), f_2(c + h) - f_2(c), ..., f_m(c + h) - f(c))}{h} \\ &= \left ( \lim_{h \to 0} \frac{f_1(c + h) - f_1(c)}{h}, \lim_{h \to 0} \frac{f_2(c + h) - f_2(c)}{h}, ..., \lim_{h \to 0} \frac{f_m(c + h) - f(c)}{h} \right ) \\ &= (f_1'(c), f_2'(c), ..., f_m'(c)) \end{align}

For example, consider the function $f : \mathbb{R} \to \mathbb{R}^4$ defined by:

(5)
\begin{align} \quad \mathbf{f}(t) = (t, t^2, t^3, t^4) \end{align}

Then the derivative of $\mathbf{f}$ is:

(6)
\begin{align} \quad \mathbf{f}(t) = (1, 2t, 3t^2, 4t^3) \end{align}

And the derivative of $\mathbf{f}$ at $c = 2$ is:

(7)
\begin{align} \quad \mathbf{f}(2) = (1, 4, 12, 32) \end{align}

Once again, the definition is justified since when $n = 1$ we have that the definition reduces down to the special case of differentiating a single variable vector-valued function.

Now let's look at a more complicated example of computing a partial derivative. Let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by:

(8)
\begin{align} \quad \mathbf{f}(x, y) = (x^2 + y^2, 2xy) \end{align}

Then the partial derivative of $\mathbf{f}$ at $\mathbf{c}$ with respect to the first variable is:

(9)
\begin{align} \quad D_1 \mathbf{f}(\mathbf{c}) &= \lim_{h \to 0} \frac{\mathbf{f}(\mathbf{c} + h(1, 0)) - \mathbf{f}(\mathbf{c})}{h} \\ &= \lim_{h \to 0} \frac{(f_1((c_1, c_2)+ h(1, 0)), f_2((c_1, c_2)+ h(1, 0))) - (f_1(\mathbf{c}), f_2(c_1, c_2)))}{h} \\ &= \lim_{h \to 0} \frac{f_1(c_1 + h, c_2), f_2(c_1 + h, c_2)) - (f_1(c_1, c_2), f_2(c_1, c_2))}{h} \\ &= \lim_{h \to 0} \frac{(f_1(c_1 + h, c_2) - f_1(c_1, c_2), f_2(c_1 + h, c_2) - f_2(c_1, c_2))}{h} \\ &= \lim_{h \to 0} \frac{((c_1 + h)^2 + c_2^2 - [c_1^2 + c_2^2], 2(c_1 + h)(c_2) - 2c_1c_2)}{h} \\ &= \lim_{h \to 0} \frac{(c_1^2 + 2c_1h + h^2) + c_2^2 - c_1^2 - c_2^2, 2c_1c_2 + 2c_2h - 2c_1c_2)}{h} \\ &= \lim_{h \to 0} \frac{(2c_1h + h^2, 2c_2h)}{h} \\ &= \left ( \lim_{h \to 0} \frac{2c_1h + h^2}{h}, \lim_{h \to 0} \frac{2c_2h}{h} \right ) \\ &= \left ( \lim_{h \to 0} [2c_1 + h], \lim_{h \to 0} 2c_2 \right ) \\ &= (2c_1, 2c_2) \end{align}

So the partial derivative of $\mathbf{f}$ with respect to the first variable at say $(1, 2)$ is $D_1 \mathbf{f}(1, 2) = (2, 4)$.

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License