Linearity of Integrals of Step Functions on General Intervals

Linearity of Integrals of Step Functions on General Intervals

Recall from the Integrals of Step Functions on General Intervals page that if $f$ is a step function on the interval $I$ then there exists a closed and bounded interval $[a, b] \subseteq I$ such that $f$ is a step function in the usual sense on $[a, b]$ and such that $f(x) = 0$ for all $x \in I \setminus [a, b]$ and the integral of $f$ over $I$ is defined as:

(1)
\begin{align} \quad \int_I f(x) \: dx = \int_a^b f(x) \: dx \end{align}

Furthermore, since $f$ is a step function on $[a, b]$ we have that there exists a partition $P = \{ a = x_0, x_1, ..., x_n = b \} \in \mathscr{P}[a, b]$ such that $f(x) = c_k$ (here $c_k$ is a constant) on each subinterval $(x_{k-1}, x_k)$ for each $k \in \{ 1, 2, ..., n \}$ and $\int_a^b f(x) \: dx$ exists by Lebesgue's criterion and $\displaystyle{\int_a^b f(x) \: dx = \sum_{k=1}^{n} c_k[x_k - x_{k-1}]}$. Therefore:

(2)
\begin{align} \quad \int_I f(x) \: dx = \int_a^b f(x) \: dx = \sum_{k=1}^{n} c_k [x_k - x_{k-1}] \end{align}

We will now look at some nice linearity properties regarding integrals of step functions on intervals.

Theorem 1: Let $f$ and $g$ be step functions on the interval $I$. Then $f + g$ is a step function on $I$ and $\displaystyle{\int_I [f(x) + g(x)] \: dx = \int_I f(x) \: dx + \int_I g(x) \: dx}$.
  • Proof: Let $f$ and $g$ be step functions on the interval $I$. Then there exists closed and bounded intervals $[a, b]$ and $[c, d]$ such that $f$ is a step function in the usual sense on $[a, b]$ and $f(x) = 0$ for all $x \in I \setminus [a, b]$ and also $g$ is a step function in the usual sense on $[c, d]$ and $g(x) = 0$ for all $x \in I \setminus [c, d]$.
  • Consider $[a, b] \cup [c, d]$. This union is either a closed interval if $[a, b] \cap [c, d] \neq \emptyset$ or the union of two closed intervals. In either case, there exists a "larger" closed interval $[p, q]$ such that $[a, b], [c, d] \subset [p, q]$. Then $f + g$ must be a step function on $I$ since $f + g$ is a step function in the usual sense on $[p, q]$ and $f(x) + g(x) = 0$ for all $x \in I \setminus [e, f]$. So:
(3)
\begin{align} \quad \int_I [f(x) + g(x)] \: dx &= \int_p^q [f(x) + g(x)] \: dx \\ \quad &= \int_p^q f(x) \: dx + \int_p^q g(x) \: dx \end{align}
  • Now $f(x) = 0$ for all $x \in I \setminus [a, b]$ and so $f(x) = 0$ for all $x \in [p, q] \setminus [a, b]$. Similarly, $g(x) = 0$ for all $x \in I \setminus [c, d]$ and so $g(x) = 0$ for all $x \in [p, q] \setminus [c, d]$ so:
(4)
\begin{align} \quad \int_I [f(x) + g(x)] \: dx &= \int_a^b f(x) \: dx + \int_c^d g(x) \: dx \\ \quad &= \int_I f(x) \: dx + \int_I g(x) \: dx \quad \blacksquare \end{align}
Theorem 2: Let $f$ be a step functions on the interval $I$ and let $k \in \mathbb{R}$. Then $kf$ is a step function on $I$ and $\displaystyle{\int_I kf(x) \: dx = k \int_I f(x) \: dx}$.
  • Proof: Since $f$ is a step function on the interval $I$ there exists a closed and bounded interval $[a, b] \subseteq I$ such that $f$ is a step function in the usual sense on $[a, b]$ and $f(x) = 0$ for all $x \in I \setminus [a, b]$. Then $kf$ is also a step function on the interval $I$ since for that same $[a, b] \subseteq I$ we have that $kf(x) = 0$ for all $x \in I \setminus [a, b]$. So:
(5)
\begin{align} \quad \int_I kf(x) \: dx &= \int_a^b kf(x) \: dx \\ \quad &= k \int_a^b f(x) \: dx \\ \quad &= k \int_I f(x) \: dx \quad \blacksquare \end{align}
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License