Linear Independence and Dependence Examples 4
Recall from the Linear Independence and Dependence page that a set of vectors $\{ v_1, v_2, ..., v_n \}$ is said to be Linearly Independent in $V$ if the vector equation $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$ implies that $a_1 = a_2 = ... = a_n = 0$, that is, the zero vector is uniquely expressed as a linear combination of the vectors in $\{ v_1, v_2, ..., v_n \}$ with the coefficients all being zero.
If a set of vectors $\{ v_1, v_2, ..., v_n \}$ is not linearly independent then we say the set if Linearly Dependent and that there exists scalars $a_1, a_2, ..., a_n \in \mathbb{F}$, not all zero, such that $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$.
We will now look at some more examples to regarding the linear independence / dependence of a set of vectors.
Example 1
Prove that if $\{ v_1, v_2, ..., v_n \}$ is a linearly independent set of vectors then for $\lambda \in \mathbb{F}$, $\lambda \neq 0$ we have that $\{ \lambda v_1, \lambda v_2, ..., \lambda v_n \}$ is also a linearly independent list. What happens to the linear independence of this list when $\lambda = 0$?
Let $\{ v_1, v_2, ..., v_n \}$ be a linearly independent set of vectors. We want to show that then $\{ \lambda v_1, \lambda v_2, ..., \lambda v_n \}$ is a linearly independent set of vectors. Consider the following vector equation for $a_1, a_2, ..., a_n \in \mathbb{F}$:
(1)Since $\lambda \neq 0$, we can divide both sides by it to get that:
(2)Since $\{ v_1, v_2, ..., v_n \}$ is a linearly independent set of vectors, the equation above implies that $a_1 = a_2 = ... = a_n = 0$ so $\{ \lambda v_1, \lambda v_2, ..., \lambda v_n \}$ is a linearly independent set of vectors.
Note that if $\lambda = 0$ then our set of vectors reduces to $\{ 0, 0, ..., 0 \}$, and any set of vectors containing the zero vector is linearly dependent, so we require that $\lambda \neq 0$.
Example 2
Consider the vector space $\mathbb{C}$ over the field $\mathbb{R}$. Show that the set of vectors $\{ 1 - i, 1 +i \}$ is linearly independent in $\mathbb{C}$.
Let $a_1, a_2 \in \mathbb{R}$ and consider the following vector equation:
(3)We note that the above equation implies that $a_1 + a_2 = 0$ and $a_1 = a_2$. Substituting the second equation into the first and we have that $2a_1 = 0$ which implies that $a_1 = 0$, and substituting this into the second equation gives us that $a_2 = 0$.
So indeed, $\{ 1 - i , 1 + i \}$ is a linearly independent set in $\mathbb{C}$.
Example 3
Consider the vector space $\mathbb{C}$ over the field $\mathbb{C}$. Show that the set of vectors $\{ 1 - i, 1 + i \}$ is linearly dependent in $\mathbb{C}$.
Note the subtle difference between example 2 and example 3.
Let $a_1, a_2 \in \mathbb{C}$ and consider the following vector equation:
(4)In this case we have that $a_1 + a_2 = 0$ and $a_2 - a_1 = 0$, however, this time, the scalars are not real numbers and are instead complex numbers. Let $a_1 = b_1 + c_1i$ and let $a_2 = b_2 + c_2i$ where $b_1, b_2, c_1, c_2 \in \mathbb{R}$. Then we have that:
(5)The equation above implies that $b_1 + b_2 = c_2 - c_1$ and $c_1 + c_2 = b_1 - b_2$. If we $b_1$ from the second equation then we get $b_1 = c_1 + c_2 + b_2$, and plugging this into the first equation gives us:
(6)Thus $c_1 = -b_2$. Let $c_1 = 1$, $b_2 = -1$. Then $b_1 = c_2$, so let $b_1 = 2$ and $c_2 = 2$. Thus we have that $a_1 = 2 + i$ and $a_2 = -1 + 2i$. Thus:
(7)Thus the choice of scalars $a_1, a_2 \in \mathbb{C}$ such that $a_1(1 - i) + a_2(1 + i) = 0$ are not unique so $\{ 1 - i, 1 + i \}$ is linearly dependent in $\mathbb{C}$.