The Integral Test for Positive Series of Real Numbers Examples 1
Recall from The Integral Test for Positive Series of Real Numbers page the following test for convergence/divergence of a geometric series:
The Integral Test for Positive Series of Real Numbers
Let $\displaystyle{\sum_{n=1}^{\infty} a_n}$ be a positive series and let $f$ be a positive function that is decreasing and approaching $0$ on the interval $[1, \infty)$ such that $f(n) = a_n$.
a) The series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ converges if and only if:
- The improper integral $\displaystyle{\int_1^{\infty} f(n) \: dx}$ converges.
b) The series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ diverges if and only if:
- The improper integral $\displaystyle{\int_1^{\infty} f(n) \: dx}$ diverges.
We will now look at some examples of applying the integral test.
Example 1
Determine whether $\displaystyle{\sum_{n=1}^{\infty} \frac{1}{n + 1}}$ converges or diverges.
The function $\displaystyle{f(x) = \frac{1}{x + 1}}$ is a positive, continuous, decreasing function that approaches $0$ on the interval $[1, \infty)$. So, we can apply the integral test to this series.
(1)Since the improper integral $\displaystyle{\int_1^{\infty} \frac{1}{x + 1} \: dx}$ diverges, we have by the integral test that $\displaystyle{\sum_{n=1}^{\infty} \frac{1}{n + 1}}$ diverges.
Example 2
Determine whether $\displaystyle{\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}}$ converges or diverges.
Notice that the function $\displaystyle{f(x) = \frac{1}{x \ln^2 x}}$ is a positive, continuous, decreasing function that approaches $0$ on the interval $[2, \infty)$. So, we can apply the integral test to this series. Noting that $\displaystyle{-\frac{1}{\ln b} \to 0}$ as $b \to \infty$ and we have that:
(2)Since the improper integral $\displaystyle{\int_2^{\infty} \frac{1}{x \ln^2 x} \: dx}$ converges, we have by the integral test that $\displaystyle{\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}}$ converges.