Inner Products and Inner Product Spaces
Definition: Let $X$ be a linear space. A function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ is an Inner Product on $X$ if the following properties are satisfied for all $x, y, z \in X$ and for all $\lambda \in \mathbb{C}$: 1) $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ if and only if $x = 0$. (Positive Definiteness Property) 2) $\langle x, y \rangle = \overline{\langle y, x \rangle}$. (Conjugate Symmetry Property) 3) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ and $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$. (Linearity in the First Component Property) |
If $X$ is a linear space over $\mathbb{R}$ then the second condition is replaced with $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in X$.
There is a similar linearity property for the second component of inner products which is proven in the proposition below.
Proposition 1: Let $X$ be a linear space and let $\langle \cdot, \cdot \rangle$ be an inner product on $X$. Then for all $x, y, z \in X$ and for all $\lambda \in \mathbb{C}$ we have that: a) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$. b) $\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$. |
If $X$ is a linear space over $\mathbb{R}$ the (b) is replaced with $\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$ for all $\lambda \in \mathbb{R}$.
- Proof of a): Let $x, y, z \in X$. Then:
- Proof of b) Let $x, y \in X$ and let $\lambda \in \mathbb{C}$. Then:
Definition: An Inner Product Space is a linear space $H$ paired with an inner product $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ on $H$. |
Later we will see that every inner product space is a normed space with the norm defined on $H$ to be $\| x \| = \langle x, x \rangle^{1/2}$.
One of the simplest examples of an inner product space is $\mathbb{R}^n$ with the usual Euclidean dot product defined for all $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$ by:
(3)And similarly, $\mathbb{C}^n$ with the usual Euclidean dot product defined for all $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{C}^n$ by:
(4)For another example, let $(X, \mathfrak T, \mu)$ be a measure space. Then the Lebesgue space $L^2(X, \mathfrak T, \mu)$ is an inner product space with inner product defined for all $f, g \in L^2(X, \mathfrak T, \mu)$ by:
(5)