Index of Mathematical Symbols
Index of Mathematical Symbols
Greek Alphabet
$\alpha$ | Alpha |
---|---|
$\beta$ | Beta |
$\gamma$ | Gamma |
$\delta, \Delta$ | Delta |
$\epsilon$ | Epsilon |
$\zeta$ | Zeta |
$\eta$ | Eta |
$\theta$ | Theta |
$\kappa$ | Kappa |
$\lambda$ | Lambda |
$\mu$ | Mu |
$\xi$ | Xi |
$\pi$ | Pi |
$\rho$ | Rho |
$\sigma$ | Sigma |
$\tau$ | Tau |
$\phi, \varphi$ | Phi |
$\chi$ | Chi |
$\psi, \Psi$ | Psi |
$\omega, \Omega$ | Omega |
Set/Logical Symbols
$\in$ | In |
---|---|
$\cup, \bigcup$ | Union |
$\cap, \bigcap$ | Intersection |
$\subseteq, \subset$ | Subset |
$\supseteq, \supset$ | Superset |
$\setminus$ | Set difference |
$\triangle$ | Symmetric difference |
$\times$ | Cartesian product |
$A^c$ | Complement of $A$ |
$\emptyset, \{ \}$ | Empty set |
$\mathbb{N}$ | Set of natural numbers |
$\mathbb{Z}$ | Set of integers |
$\mathbb{Q}$ | Set of rational numbers |
$\mathbb{R}$ | Set of real numbers |
$\mathbb{C}$ | Set of complex numbers. |
$\vee$ | Or (connective) |
---|---|
$\wedge$ | And (connective) |
$\rightarrow, \Rightarrow$ | Implication (connective) |
$\leftrightarrow, \Leftrightarrow$ | Logical equivalence (connective) |
$\exists$ | Existential quantifier |
$\forall$ | Universal quantifier |
$\blacksquare$ | End of proof |
Calculus, Analysis, and Linear Algebra Symbols
$D(f)$, $\mathrm{dom} (f)$ | Domain |
---|---|
$R(f)$, $\mathrm{ran} (f)$ | Range |
$C(f)$ | Codomain |
$(a, b)$ | Bounded open interval |
$[a, b]$ | Bounded closed interval |
$a_0 + a_1x + ... + a_nx^n$ | Polynomial |
$\sqrt{x}$ | Squareroot function |
$\sin x$, $\cos x$, $\tan x$ | Sine, cosine, and tangent functions. |
$\sec x$, $\csc x$, $\cot x$ | Secant, cosecant, and cotangent functions. |
$\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$ | Inverse sine, inverse cosine, and inverse tangent functions. |
$a^x$, $e^x$ | Exponential functions |
$\log_a x$, $\ln x$ | Logarithmic functions |
$\lim$ | Limit |
$\limsup$ | Limit superior |
$\liminf$ | Limit inferior |
$\sup$ | Supremum |
$\inf$ | Infimum |
$dx$ | Differential |
$\displaystyle{\frac{d}{dx}}$ | Differentiation operator |
$\displaystyle{\int}$ | Integral |
$(a_n)_{n=1}^{\infty}, \{ a_n \}_{n=1}^{\infty}$ | Sequence |
$\to$ | Convergence |
$\uparrow$ | Increasing |
$\downarrow$ | Decreasing |
$(M, d)$ | Metric space |
$d$ | Metric |
$(X, \tau)$ | Topological space |
$B(x, r)$ | Open ball |
$\mathrm{int} (A)$ | Interior |
$\overline{A}$ | Closure |
$P = \{ a = x_0 < x_1 < ... < x_n = b \}$ | Partition |
$\mathscr{P} [a, b]$ | Set of partitions |
$V_f (P)$ | Variation of $f$ |
$S(I)$ | Set of step functions on $I$ |
$U(I)$ | Set of upper functions on $I$ |
$L(I)$ | Set of Lebesgue integrable functions on $I$ |
$\sum$ | Summation |
$\prod$ | Product |
$A_{m \times n}$ | $m$ by $n$ Matrix |
---|---|
$I_n$ | $n$ by $n$ Identity matrix |
$0_{m \times n}$ | $m$ by $n$ Zero matrix |
$A^T$ | Matrix transpose |
$A^{-1}$ | Matrix inverse |
$\mathrm{adj} (A)$ | Adjoint matrix |
$\mathrm{cof} (A)$ | Cofactor matrix |
$\det$ | Determinant |
$\vec{x}, \mathbf{x}$ | Vector |
$\perp$ | Perpendicular, orthogonal |
$\mathrm{proj}$ | Projection |
$\parallel$ | Parallel |
$\| \cdot \|$ | Norm |
$\equiv$ | Congruence (relation) |
---|---|
$\sim$ | Equivalence (relation) |
$<, \leq$ | Less than, less than or equal (relation) |
$>, \geq$ | Greater than, greater than or equal (relation) |
$=$ | Equality |
$\mod n$ | Modulo |
Abstract Algebra Symbols
$+$ | Addition (binary operation) |
---|---|
$\cdot, *, \times$ | Multiplication (binary operation) |
$-$ | Negation (unary operation) |
$e$ | Identity element |
$0$ | Additive identity |
$1$ | Multiplicative identity |
$-a$ | Additive inverse |
$a^{-1}$ | Multiplicative inverse |
$(G, +), (G, \cdot)$ | Additive group, multiplicative group |
$(R, +, \cdot)$ | Ring |
$(F, +, \cdot)$ | Field |