Examples of Convergent Sequences of Real Numbers
We will now look at some examples of convergent sequences of real numbers.
Example 1
Show that the sequence $\left \{ \frac{3n^2}{n^2 + 1} \right \}_{n=1}^{\infty}$ converges to $3$.
Let $\epsilon > 0$ be given. We have that:
(1)We want $\frac{3}{n^2} < \epsilon$ which is equivalent to $\sqrt{\frac{3}{\epsilon}} < n$. So choose $N > \sqrt{\frac{3}{\epsilon}}$. Then if $n \geq N$ we have that $n > \sqrt{\frac{3}{\epsilon}} = \frac{\sqrt{3}}{\sqrt{\epsilon}}$, and so $\frac{1}{n} < \frac{\sqrt{\epsilon}}{\sqrt{3}}$, and $\frac{1}{n^2} < \frac{\epsilon}{3}$, so:
(2)Therefore $\left \{ \frac{3n^2}{n^2 + 1} \right \}_{n=1}^{\infty}$ converges to $3$.
Example 2
Show that the sequence $\left \{ \frac{2}{n!} \right \}_{n=1}^{\infty}$ converges to $0$.
Let $\epsilon > 0$ be given. Then:
(3)So choose $N > \frac{\epsilon}{2}$. Then if $n \geq N$ we have that $n > \frac{2}{\epsilon}$, so $\frac{1}{n} < \frac{\epsilon}{2}$ and so:
(4)Therefore $\left \{ \frac{2}{n!} \right \}_{n=1}^{\infty}$ converges to $0$.