Examples of Bilinear Mappings
Recall from the Bilinear Mappings and Multilinear Mappings page that if $X$, $Y$, and $Z$ are linear spaces over $\mathbf{F}$ then a bilinear map from $X$ and $Y$ to $Z$ is a function $T : X \times Y \to Z$ such that for every fixed $y \in Y$ the map $x \to T(x, y)$ is linear and for every fixed $x \in X$ the map $y \to T(x, y)$ is linear.
Furthermore, if $X$, $Y$, and $Z$ are normed linear spaces then a bilinear map $T : X \times Y \to Z$ is said to be bounded if there exists an $M > 0$ such that $\| T(x, y) \|_Z \leq M \| x \|_X \| y \|_Y$ for all $x \in X$ and for all $y \in Y$.
We will now look at some examples of bilinear maps.
Example 1
Let $X$ be a normed linear space. Define $T : X^* \times X \to \mathbf{F}$ for all $f \in X^*$ and all $x \in X$ by:
(1)Note that for all fixed $f \in X^*$ and all $x, y \in X$, $\alpha \in \mathbf{F}$ we have that $T(f, x+y) = f(x + y) = f(x) + f(y) = T(f, x) + T(f, y)$ and $T(f, \alpha x) = f(\alpha x) = \alpha f(x) = \alpha T(f, x)$. Similarly, for all fixed $x \in X$ and all $f, g \in X^*$, $\alpha \in \mathbf{F}$ we have that $T(f + g, x) = (f + g)(x) = f(x) + g(x) = T(f, x) + T(g, x)$ and $T(\alpha f, x) = (\alpha f)(x) = \alpha f(x) = \alpha T(f, x)$. So $T$ is a bilinear map.
Example 2
Let $X = \mathbb{F}^n$ (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{C}$). Define $T : X \times X \to \mathbf{F}$ for all $\vec{x} = (x_1, x_2, ..., x_n), \vec{y} = (y_1, y_2, ..., y_n) \in X$ by:
(2)Then $T$ is simply the dot product on $\mathbb{R}^n$ and it is easy to verify that the dot product on $\mathbb{R}^n$ is a bilinear map.
Example 3
Let $X$, $Y$, $Z$, and $W$ be normed linear spaces and let $T : X \times Y \to Z$ be a bilinear map and let $S : W \to Y$ be a linear map. Define $A : X \times W \to Z$ for all $x \in X$ and all $w \in W$ by:
(3)Note that for all fixed $x \in X$ and all $w_1, w_2 \in W$, $\alpha \in \mathbf{F}$ we have that:
(4)So for each fixed $x \in X$ the map $w \to A(x, w)$ is linear. Similarly, it can be shown that for each fixed $w \in W$ the map $x \to A(x, w)$ is linear. Therefore $A$ is a bilinear map.