Double Sequences of Real Numbers Review

Double Sequences of Real Numbers Review

We will now review some of the recent material regarding double sequences of real numbers.

  • On the Double Sequences of Real Numbers page we said that a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is said to be a double sequence denoted $(f(m,n))_{m,n=1}^{\infty} = (a_{mn})_{m,n=1}^{\infty}$.
(1)
\begin{align} \quad \mid a_{mn} - A \mid < \epsilon \end{align}
  • If no such $A \in \mathbb{R}$ satisfies the definition above then $(a_{mn})_{m,n=1}^{\infty}$ is said to Diverge.
  • We also define the two corresponding Iterated Limits of this double sequence as:
(2)
\begin{align} \quad \lim_{m \to \infty} \left ( \lim_{n \to \infty} a_{mn} \right ) \quad \mathrm{and} \quad \lim_{n \to \infty} \left ( \lim_{m \to \infty} a_{mn} \right ) \end{align}
  • We noted that in general, these two limits may not equal each other.
  • We first saw that if $(a_{mn})_{m,n=1}^{\infty}$ is a double sequence that converges to $A \in \mathbb{R}$ if $\displaystyle{\lim_{n \to \infty} a_{mn}}$ exists then $\displaystyle{\lim_{m \to \infty} \left ( \lim_{n \to \infty} a_{mn} \right ) = A}$. Similarly, if $\displaystyle{\lim_{m \to \infty} a_{mn}}$ exists then $\displaystyle{\lim_{n \to \infty} \left ( \lim_{m \to \infty} a_{mn} \right ) = A}$.
  • Therefore, if we have that $\displaystyle{\lim_{m \to \infty} \left ( \lim_{n \to \infty} a_{mn} \right ) \neq \lim_{n \to \infty} \left ( \lim_{m \to \infty} a_{mn} \right )}$ we can conclude that the double sequence $(a_{mn})_{m,n=1}^{\infty}$ diverges.
  • We also saw that if $(a_{mn})_{m,n=1}^{\infty}$ is a double sequence that converges to $A \in \mathbb{R}$ and if $f, g : \mathbb{N} \to \mathbb{R}$ are two functions such that $\displaystyle{\lim_{t \to \infty} f(t) = \infty}$ and $\displaystyle{\lim_{t \to \infty} g(t) = \infty}$ then:
(3)
\begin{align} \quad \lim_{t \to \infty} a_{f(t),g(t)} = A \end{align}
  • Therefore, if there exists functions $f_1, g_1, f_2, g_2 : \mathbb{N} \to \mathbb{R}$ where $\displaystyle{\lim_{t \to \infty} f_1(t), g_1(t), f_2(t), g_2(t) = \infty}$ and such that $\displaystyle{\lim_{t \to \infty} a_{f_1(t), g_1(t)} \neq \lim_{t \to \infty} a_{f_2(t), g_2(t)}}$ then we can conclude that the double sequence $(a_{mn})_{m,n=1}^{\infty}$ diverges.
(4)
\begin{align} \quad a_{mn} \leq M' \end{align}
  • Similarly, we said that a double sequence $(a_{mn})_{m,n=1}^{\infty}$ is Bounded Below if there exists an $m' \in \mathbb{R}$ such that for all $m, n \in \mathbb{N}$ we have that:
(5)
\begin{align} \quad m' \leq a_{mn} \end{align}
  • Furthermore, a double sequence $(a_{mn})_{m,n=1}^{\infty}$ is said to be Bounded if it is both bounded above and below, i.e., if there exists an $M^* \in \mathbb{R}$, $M^* > 0$ such that for all $m, n \in \mathbb{N}$ we have that:
(6)
\begin{align} \quad \mid a_{mn} \mid \leq M^* \end{align}
  • A double sequence that is not bounded is said to be Unbounded.
  • On the The Squeeze Theorem for Double Sequences of Real Numbers we proved the Squeeze Theorem for double sequences of real numbers. We saw that if $(a_{mn})_{m,n=1}^{\infty}$, $(b_{mn})_{m,n=1}^{\infty}$, and $(c_{mn})_{m,n=1}^{\infty}$ are double sequences such that there exists an $M \in \mathbb{N}$ such that $a_{mn} \leq b_{mn} \leq c_{mn}$ for all $m, n \geq N$, and if $(a_{mn})_{m,n=1}^{\infty}$ and $(c_{mn})_{m,n=1}^{\infty}$ converge to $L$ then $(b_{mn})_{m,n=1}^{\infty}$ also converges to $L$.
  • On the Cauchy Convergence Criterion for Double Sequences we said that a double sequence $(a_{mn})_{m,n=1}^{\infty}$ is called a Cauchy Double Sequence (or simply, "Cauchy") if for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $m_1, n_1, m_2, n_2 \geq N$ then:
(7)
\begin{align} \quad \mid a_{m_1n_1} - a_{m_2n_2} \mid < \epsilon \end{align}
  • We then proved that a double sequence $(a_{mn})_{m,n=1}^{\infty}$ converges if and only if it is Cauchy which is an extension to the analogous theorem for regular sequences of real numbers.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License