Division of Complex Numbers Examples 1
Recall from the Division of Complex Numbers page that if $z = a + bi, w = c + di \in \mathbb{C}$ then the quotient $\displaystyle{z \div w = \frac{z}{w}}$ is defined as:
(1)We will now look at some example problems regarding the division of complex numbers.
Example 1
Let $z = 2 + i$ and $w = -3 - 2i$. Find $\displaystyle{\frac{z}{w}}$.
We have that:
(2)Example 2
Simplify $\displaystyle{\frac{1 + i}{1 - i}}$ and $\displaystyle{\frac{1 - i}{1 + i}}$.
We have that:
(3)And also:
(4)Example 3
Prove or disprove the following statement: If $z = a + bi \in \mathbb{C}$, $z \neq 0$, then $\displaystyle{\frac{a + bi}{a - bi} = - \frac{a - bi}{a + bi}}$.
This statement is false in general. Take $z = a + bi \in \mathbb{R}$ with $z \neq 0$. Then $z = a + 0i$ for some nonzero $a \in \mathbb{R}$, and $z = a - 0i$ as well. So:
(5)