Converting nth Order ODEs to Systems of n First Order ODEs
Table of Contents

Converting nth Order ODEs to Systems of n First Order ODEs
Recall from the nth Order Ordinary Differential Equations page that every $n^{\mathrm{th}}$ order ODE can be converted into a system of $n$ first order ODEs.
We will now look at some examples of doing such.
Example 1
Convert the $3^{\mathrm{rd}}$ order ODE $y''' = t + 2y + 3y''$ with initial conditions $y(0) = 1$, $y'(0) = 2$, and $y''(0) = 3$ to a system of $3$ first order ODEs.
Let:
(1)\begin{align} \quad x_1 &= y \\ \quad x_2 &= y' \\ \quad x_3 &= y'' \end{align}
Then the equivalent system of $3$ first order ODEs is:
(2)\begin{align} \quad x_1' &= x_2 \\ \quad x_2' &= x_3 \\ \quad x_3' &= t + 2y + 3y'' \\ &= t + 2x_1 + 3x_3 \end{align}
We now convert the initial conditions:
(3)\begin{align} \quad y(0) = x_1(0) &= 1 \\ \quad y'(0) = x_2(0) &= 2 \\ \quad y''(0) = x_3(0) &= 3 \end{align}
Example 2
Convert the $4^{\mathrm{th}}$ order ODE $4y'''' = 3y'  ty''$ with initial conditions $y(1) = 2$, $y'(1) = 3$, $y''(1) = 6$, and $y'''(1) = 4$ to a system of $4$ first order ODEs.
Let:
(4)\begin{align} \quad x_1 &= y \\ \quad x_2 &= y' \\ \quad x_3 &= y'' \\ \quad x_4 &= y''' \end{align}
Then:
(5)\begin{align} \quad x_1' &= x_2 \\ \quad x_2' &= x_3 \\ \quad x_3' &= x_4 \\ \quad x_4' &= \frac{3}{4}y'  \frac{t}{4}y'' \\ &= \frac{3}{4}x_2  \frac{t}{4} x_3 \end{align}
The initial conditions are:
(6)\begin{align} \quad y(1) = x_1(1) &= 2 \\ \quad y'(1) = x_2(1) &= 3 \\ \quad y''(1) = x_3(1) &= 6 \\ \quad y'''(1) = x_4(1) &= 4 \end{align}