Convergence Theorems for Integrals Review
Convergence Theorems for Integrals Review
We will now review all of the convergence theorems for integrals that we have looked at thus far.
Theorem | Hypotheses | Conclusion |
---|---|---|
Lebesgue Integrability of Functions that are 0 Almost Everywhere | 1) $f(x) = 0$ almost everywhere on $I$. | a) $f \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx = 0}$. |
Lebesgue Integrability of Functions Equalling Lebesgue Integrable Functions Almost Everywhere | 1) $f(x) = g(x)$ almost everywhere on $I$. 2) $f \in L(I)$ |
a) $g \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I g(x) \: dx}$. |
Levi's Monotone Convergence Theorem for Step Functions | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of step functions that is increasing almost everywhere on $I$. 2) $\displaystyle{\lim_{n \to \infty} \int_I f_n(x) \: dx}$ exists. |
a) $(f_n(x))_{n=1}^{\infty}$ converges almost everywhere on $I$ to a limit function $f \in U(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I \lim_{n \to \infty} f_n(x) \: dx = \lim_{n \to \infty} \int_I f_n(x) \: dx}$. |
Levi's Monotone Convergence Theorem for Upper Functions | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of upper functions that is increasing almost everywhere on $I$. 2) $\displaystyle{\lim_{n \to \infty} \int_I f_n(x) \: dx}$ exists. |
a) $(f_n(x))_{n=1}^{\infty}$ converges almost everywhere on $I$ to a limit function $f \in U(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I \lim_{n \to \infty} f_n(x) \: dx = \lim_{n \to \infty} \int_I f_n(x) \: dx}$. |
Levi's Monotone Convergence Theorem for Lebesgue Integrable Functions | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of Lebesgue integrable functions that is increasing almost everywhere on $I$. 2) $\displaystyle{\lim_{n \to \infty} \int_I f_n(x) \: dx}$ exists. |
a) $(f_n(x))_{n=1}^{\infty}$ converges almost everywhere on $I$ to a limit function $f \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I \lim_{n \to \infty} f_n(x) \: dx = \lim_{n \to \infty} \int_I f_n(x) \: dx}$. |
Lebesgue's Dominated Convergence Theorem for Series | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of Lebesgue integrable functions. 2) Each $f_n$ is nonnegative. 3) $\displaystyle{\sum_{n=1}^{\infty} \int_I f_n(x) \: dx}$ converges almost everywhere on $I$. |
a) $\displaystyle{\sum_{n=1}^{\infty} f_n(x)}$ converges almost everywhere on $I$ to a limit function $f \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I \sum_{n=1}^{\infty} f_n(x) \: dx = \sum_{n=1}^{\infty} \int_I f_n(x) \: dx}$. |
Fatou's Lemma | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of Lebesgue integrable functions that are nonnegative. 2) $(f_n(x))_{n=1}^{\infty}$ converges almost everywhere on $I$ to a limit function $f$. 3) There exists an $M \in \mathbb{R}$, $M > 0$ such that $\int_I f_n(x) \: dx \leq M$ for all $n \in \mathbb{N}$. |
a) $f \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx \leq M}$. |
Lebesgue's Dominated Convergence Theorem | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of Lebesegue integrable functions on $I$. 2) $(f_n(x))_{n=1}^{\infty}$ converges almost everywhere on $I$ to a limit function $f$. 3) There exists a nonnegative function $g \in L(I)$ such that $\mid f_n(x) \mid \leq g(x)$ almost everywhere on $I$ for all $n \in \mathbb{N}$. |
a) $f \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I \lim_{n \to \infty} f_n(x) \: dx = \lim_{n \to \infty} \int_I f_n(x) \: dx}$. |
Lebesgue's Dominated Convergence Theorem for Series | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of Lebesgue integrable functions on $I$. 2) Each $f_n$ is nonnegative on $I$. 3) $\displaystyle{\sum_{n=1}^{\infty} f_n(x)}$ converges almost everywhere on $I$ to a limit function $f$. 4) There exists a nonnegative function $g \in L(I)$ such that $\mid f(x) \mid \leq g(x)$ almost everywhere on $I$. |
a) $f \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I \sum_{n=1}^{\infty} f_n(x) \: dx = \sum_{n=1}^{\infty} \int_I f_n(x) \: dx}$. |
Lebesgue's Bounded Interval Convergence Theorem | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of Lebesgue integrable functions on $I$. 2) $(f_n(x))_{n=1}^{\infty}$ converges almost everywhere on $I$ to a limit function $f$. 3) There exists an $M \in \mathbb{R}$, $M > 0$ such that $\mid f_n(x) \mid \leq M$ almost everywhere on $I$ for all $n \in \mathbb{N}$. |
a) $f \in L(I)$. b) $\displaystyle{\int_I f(x) \: dx = \int_I \lim_{n \to \infty} f_n(x) \: dx = \lim_{n \to \infty} \int_I f_n(x) \: dx}$. |
Test for Lebesgue Integrability | 1) $(f_n(x))_{n=1}^{\infty}$ is a sequence of Lebesgue integrable functions on $I$. 2) $(f_n(x))_{n=1}^{\infty}$ converges almost everywhere on $I$ to a limit function $f$. 3) There exists a nonnegative function $g \in L(I)$ such that $\mid f(x) \mid \leq g(x)$ almost everywhere on $I$. |
a) $f \in L(I)$. |