Conjugate Indices 1/p + 1/q = 1
Conjugate Indices 1/p + 1/q = 1
Definition: Let $1 \leq p \leq \infty$. Define the Conjugate Index of $p$ is the number $q$ defined as follows: a) If $1 < p < \infty$ then the $q$ is such that $1 < q < \infty$ such that $\displaystyle{\frac{1}{p} + \frac{1}{q} = 1}$. b) If $p = 1$ then $q = \infty$. c) If $p = \infty$ then $q = 1$. |
Note that if $1 < p < \infty$ then we can give an explicit formula for the conjugate index $q$ of $p$. Namely:
(1)\begin{align} \quad q = \frac{p}{p-1} \end{align}
Since:
(2)\begin{align} \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{p} + \frac{p-1}{p} = \frac{1 + p - 1}{p} = 1 \end{align}
A few example of $p$ and its conjugate index is given in the table below:
$p$ | Conjugate Index, $q$ |
---|---|
$1$ | $\infty$ |
$2$ | $2$ |
$3$ | $\displaystyle{\frac{3}{2}}$ |
$4$ | $\displaystyle{\frac{4}{3}}$ |
$5$ | $\displaystyle{\frac{5}{4}}$ |
$\infty$ | $1$ |