Conference Matrices
We will now look at another type of matrix known as a conference matrix.
Definition: An $n \times n$ matrix $C$ is a Conference Matrix if every entry $c_{i,j}$ is either $0$, $-1$, or $1$ and $CC^T = (n-1)I_n$. |
Let $C = \begin{bmatrix} 0 & 1 \\ 1 ^ 0 \end{bmatrix}$. Then $C$ is a conference matrix as every entry of $C$ is either $0$, $-1$, or $1$ and:
(1)We will now begin to develop of a method for constructing conference matrices. We will first need to define a special function first.
Definition: Let $q$ be an odd prime power and let $(\mathbb{Z}_q, +)$ denote the additive group of integers modulo $q$. Let $D_q$ be the set of all nonzero squares modulo $q$. The Quadratic Character Function on $\mathbb{Z}_q$ is $\chi_q : \mathbb{Z}_q \to \{ -1, 0, 1 \}$ defined for all $x \in \mathbb{Z}_q$ by $\chi_q(x) = \left\{\begin{matrix} 0 & \mathrm{if} \: x = 0\\ 1 & \mathrm{if} \: x \in D \\ -1 & \mathrm{if} \: x \not \in D \end{matrix}\right.$. |
For example, consider the prime $q = 7$. The set of all nonzero squares modulo $q$ is:
(2)Therefore the quadratic character function on $\mathbb{Z}_7$ is:
(3)The following theorem gives us a method for constructing a conference matrix given a prime power $q$ of the form $q = 4n - 3$
Theorem 1: Let $q = 4n -3$ be a prime power and let $(\mathbb{Z}_q, +)$ denote the additive group of integers modulo $q$. Let $\infty$ denote a new point distinct from those in $\mathbb{Z}_q$ and preceding the ordering of $\mathbb{Z}_q$. Let $C$ be the $(q + 1) \times (q + 1)$ matrix whose entries are defined by $c_{i,j} = \left\{\begin{matrix} 1 & \mathrm{if} \: i = \infty, j \neq \infty \\ 1 & \mathrm{if} \: i \neq \infty, j= \infty \\ 0 & \mathrm{if} \: i = \infty, j = \infty \\ \chi_q(i-j) & \mathrm{if} \: i, j \in \mathbb{Z}_q \end{matrix}\right.$. Then $C$ is a conference matrix. |
The condition that $q = 4n - 3$ is a prime power is equivalent to $q$ being a prime power such that $q \equiv 1 \pmod 4$.
For example, consider the prime $q = 5$. Clearly $q$ is a prime power and $q = 4(2) - 3$.
We aim to construct a $(q+1) \times (q+1) = 6 \times 6$ conference matrix. Let $D_5$ be the set of nonzero squares modulo $5$. Then:
(4)The quadratic character function $\chi_5 : \mathbb{Z}_5 \to \{ -1, 0, 1 \}$ is therefore:
(5)The matrix $C$ from Theorem 1 above will then be:
(6)