Comparison Test for Improper Integrals Examples 1
Recall from The Comparison Test for Improper Integral Convergence/Divergence page that if $0 ≤ g(x) ≤ f(x)$ and if:
- If $\int_a^{\infty} f(x) \: dx$ converges, then $\int_a^{\infty} g(x) \: dx$ converges.
- If $\int_a^{\infty} g(x) \: dx$ diverges, then $\int_a^{\infty} f(x) \: dx$ diverges.
We will now look at some examples of applying the comparison test for improper integrals.
Example 1
Determine whether $\int_2^{\infty} \frac{\sin ^2 x}{x^2} \: dx$ converges or diverges.
We first note that for all $x \in \mathbb{R}$ and $x ≥ 1$ that $-1 ≤ \sin x ≤ 1$, and so for all $x \in \mathbb{R}$ and $x ≥ 1$, $0 ≤ \sin ^2 x ≤ 1$. Thus we have that:
(1)If we can show that $\int_2^{\infty} \frac{1}{x^2} \: dx$ converges, then we can invoke the comparison test. Notice:
(2)Therefore $\int_2^{\infty} \frac{1}{x^2} \: dx$ converges, so by the comparison test, $\int_2^{\infty} \frac{\sin ^2 x}{x^2} \: dx$ converges.
Example 2
Determine whether $\int_1^{\infty} \frac{x^3 +2x + 1}{\ln x} \: dx$ converges or diverges.
Determining whether this integral converges or diverges can be simplified by getting rid of "$\ln x$" in the denominator. Notice that $\ln x < x$ for all $x > 0$, in particular, $x ≥ 1$. Therefore $\frac{1}{\ln x} > \frac{1}{x}$ which implies that:
(3)Now let's evaluate $\int_1^{\infty} \frac{x^3 + 2x + 1}{x} \: dx = \int_1^{\infty} x^2 + 2 + \frac{1}{x} \: dx$.
(4)Therefore $\int_1^{\infty} \frac{x^3 + 2x + 1}{x} \: dx$ diverges, and so $\int_1^{\infty} \frac{x^3 + 2x + 1}{\ln x} \: dx$ also diverges.