Cauchy's Uniform Convergence Criterion for Series of Functions
Cauchy's Uniform Convergence Criterion for Series of Functions
Recall from the Pointwise Convergent and Uniformly Convergent Series of Functions page that if we have a sequence of functions $(f_n(x))_{n=1}^{\infty}$ with common domain $X$ then the corresponding series of functions $\displaystyle{\sum_{n=1}^{\infty} f_n(x)}$ is said to be uniformly convergent if the corresponding sequence of partial sums $(s_n(x))_{n=1}^{\infty}$ is a uniformly convergent sequence of functions.
We will now look at a nice theorem known as Cauchy's uniform convergence criterion for series of functions which gives us a nice criterion for when a series of functi
Theorem 1: Let $(f_n(x))_{n=1}^{\infty}$ be a sequence of real-valued functions with common domain $X$. Then $\displaystyle{\sum_{n=1}^{\infty} f_n(x)}$ is uniformly convergent on $X$ if and only if for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n \geq N$ and for all $x \in X$ we have that $\displaystyle{\biggr \lvert \sum_{k=n+1}^{n+p} f_k(x) \biggr \rvert < \epsilon}$ for all $p \in \mathbb{N}$. |
- Proof: $\Rightarrow$ Suppose that $\displaystyle{\sum_{n=1}^{\infty} f_n(x)}$ is uniformly convergent to some limit function $f(x)$ on $X$. Let $(s_n(x))_{n=1}^{\infty}$ denote the sequence of partial sums for this series. Then we must have that $\displaystyle{\lim_{n \to \infty} s_n(x) = f(x)}$ uniformly on $X$. So, for $\epsilon_1 = \frac{\epsilon}{2}$ there exists an $N \in \mathbb{N}$ such that if $n \geq N$ and for all $x \in X$ we have that:
\begin{align} \quad \mid s_n(x) - f(x) \mid < \epsilon \end{align}
- For any $p \in \mathbb{N}$ let $m = n + p$. Then $m \geq N$ and so:
\begin{align} \quad \quad \biggr \lvert \sum_{k=1}^{m} f_k(x) - \sum_{k=1}^{n} f_k(x) \biggr \rvert = \biggr \lvert \sum_{k=1}^{n+p} f_k(x) - \sum_{k=1}^{n} f_k(x) \biggr \rvert = \biggr \lvert \sum_{k=n+1}^{n+p} f_k(x) \biggr \rvert = \mid s_m(x) - s_n(x) \mid \leq \mid s_m(x) - f(x) \mid + \mid f(x) - s_n(x) \mid < \epsilon_1 + \epsilon_1 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}
- $\Leftarrow$ Suppose that for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n \geq N$ and for all $x \in X$ we have that:
\begin{align} \quad \biggr \lvert \sum_{k=n+1}^{n+p} f_k(x) \biggr \rvert < \epsilon \end{align}
- Let $m, n \geq N$. Assume without loss of generality that $m > n$ and that $m = n + p$ for some $p \in \mathbb{N}$. Then from above we see that for all $x \in X$:
\begin{align} \quad \mid s_m(x) - s_n(x) \mid = \biggr \lvert \sum_{k=1}^{n+p} f_k(x) - \sum_{k=1}^{n} f_k(x) \biggr \rvert = \biggr \lvert \sum_{k=n+1}^{n+p} f_k(x) \biggr \rvert < \epsilon \end{align}
- So $(s_n(x))_{n=1}^{\infty}$ converges uniformly by the Cauchy uniform convergence criterion for sequences of functions. So $\displaystyle{\sum_{n=1}^{\infty} f_n(x)}$ converges uniformly on $X$. $\blacksquare$