Additional Bounded Sequence Proofs

Additional Bounded Sequence Proofs

Theorem 1: Let $(a_n)$ and $(b_n)$ be sequences. If $(a_n)$ converges to $0$ and $(b_n)$ is bounded then $(a_nb_n)$ converges to $0$.
  • Proof: Let $\epsilon > 0$ be given.
  • Since $(b_n)$ is bounded there exists an $M \in \mathbb{R}$, $M > 0$ such that $|b_n| \leq M$ for all $n \in \mathbb{N}$.
  • Since $(a_n)$ converges to $0$ we have that for $\epsilon_1 = \frac{\epsilon}{M} > 0$ there exists an $N \in \mathbb{N}$ such that if $n \geq N$ then:
(1)
\begin{align} \quad |a_n| < \epsilon_1 = \frac{\epsilon_1}{M} \quad (*) \end{align}
  • Then if $n \geq N$ we have that $(*)$ holds and so:
(2)
\begin{align} \quad |a_nb_n - 0| = |a_nb_n| = |a_n||b_n| < \epsilon_1 \cdot M = \frac{\epsilon}{M} \cdot M = \epsilon \end{align}
  • Therefore $(a_nb_n)$ converges to $0$. $\blacksquare$
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License