Abel's Test for Convergence of Series of Real Numbers Examples 1
Recall from Abel's Test for Convergence of Series of Real Numbers page the following test for convergence/divergence of a geometric series:
Abel's Test for Convergence of Series of Real Numbers
Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences of real numbers.
If $\displaystyle{\sum_{n=1}^{\infty} a_n}$ converges, $(b_n)_{n=1}^{\infty}$ is monotonic, and $(b_n)_{n=1}^{\infty}$ converges, then we conclude that:
- $\displaystyle{\sum_{n=1}^{\infty} a_nb_n}$ converges.
Let's now look at some examples of using Abel's test.
Example 1
Show that the series $\displaystyle{\sum_{n=1}^{\infty} \frac{n^3n! \cos \left ( \frac{1}{n^2} \right )}{e^n(n+2)!}}$ converges.
Let $\displaystyle{(a_n)_{n=1}^{\infty} = \left (\frac{n^3n!}{e^n(n+2)!} \right )_{n=1}^{\infty}}$ and let $\displaystyle{(b_n)_{n=1}^{\infty} = \left ( \cos \left ( \frac{1}{n^2} \right ) \right )_{n=1}^{\infty}}$. Using the ratio test and we see that:
(1)So by the ratio test we have that the series $\displaystyle{\sum_{n=1}^{\infty} a_n}$ converges. Furthermore, the sequence $(b_n)_{n=1}^{\infty}$ is decreasing and converges to $1$. So by Abel's test, $\displaystyle{\sum_{n=1}^{\infty} \frac{n^3n! \cos \left ( \frac{1}{n^2} \right )}{e^n(n+2)!}}$ converges.
Example 2
Show that the series $\displaystyle{\sum_{n=1}^{\infty} \left ( \frac{n^2 + 3n + 1}{n^4 + 2n^2} \cdot \sum_{k=1}^{n} \frac{2}{k^2} \right )}$ converges.
Let $\displaystyle{(a_n)_{n=1}^{\infty} = \left ( \frac{n^2 + 3n + 1}{n^4 + 2n^2} \right )_{n=1}^{\infty}}$ and let $\displaystyle{(b_n)_{n=1}^{\infty} = \left ( \sum_{k=1}^{n} \frac{2}{k^2} \right )_{n=1}^{\infty}}$.
Notice that for sufficiently large $n$ that:
(2)The series $\displaystyle{\sum_{n=1}^{\infty} \frac{1}{n^2}}$ converges, and using the limit comparison test with this series we see that:
(3)So by the limit comparison test, since $0 < L = 1 < \infty$ we have that $\displaystyle{\sum_{n=1}^{\infty}\frac{n^2 + 3n + 1}{n^4 + 2n^2}}$ converges.
Now look at the sequence $(b_n)_{n=1}^{\infty}$. Notice that this is simply the sequence of partial sums to the sequences $\displaystyle{\sum_{n=1}^{\infty} \frac{2}{n^2}}$ which converges. So $(b_n)_{n=1}^{\infty}$ converges and is clearly monotonic.
So, by Abel's test we conclude that $\displaystyle{\sum_{n=1}^{\infty} \left ( \frac{n^2 + 3n + 1}{n^4 + 2n^2} \cdot \sum_{k=1}^{n} \frac{2}{k^2} \right )}$ converges.